Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Informed Induction Machine Modelling (2309.16943v1)

Published 29 Sep 2023 in cs.LG, cs.SY, and eess.SY

Abstract: This rapid communication devises a Neural Induction Machine (NeuIM) model, which pilots the use of physics-informed machine learning to enable AI-based electromagnetic transient simulations. The contributions are threefold: (1) a formation of NeuIM to represent the induction machine in phase domain; (2) a physics-informed neural network capable of capturing fast and slow IM dynamics even in the absence of data; and (3) a data-physics-integrated hybrid NeuIM approach which is adaptive to various levels of data availability. Extensive case studies validate the efficacy of NeuIM and in particular, its advantage over purely data-driven approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)
  1. H. W. Dommel, EMTP Theory Book. BPA, 1996.
  2. P. Zhang, J. R. Marti, and H. W. Dommel, “Induction machine modeling based on shifted frequency analysis,” IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 157–164, 2009.
  3. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
  4. N. Amiri, S. Ebrahimi, and J. Jatskevich, “Saturable voltage-behind-reactance models of induction machines including air-gap flux harmonics,” IEEE Transactions on Energy Conversion, accepted, 2023.
  5. L. Wang, J. Jatskevich, and S. D. Pekarek, “Modeling of induction machines using a voltage-behind-reactance formulation,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 382–392, 2008.
  6. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, Feb. 2019.
  7. B. Huang and J. Wang, “Applications of physics-informed neural networks in power systems - a review,” IEEE Transactions on Power Systems, vol. 38, no. 1, pp. 572–588, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.