A Long Exact Sequence in Symmetry Breaking: order parameter constraints, defect anomaly-matching, and higher Berry phases (2309.16749v3)
Abstract: We study defects in symmetry breaking phases, such as domain walls, vortices, and hedgehogs. In particular, we focus on the localized gapless excitations which sometimes occur at the cores of these objects. These are topologically protected by an 't Hooft anomaly. We classify different symmetry breaking phases in terms of the anomalies of these defects, and relate them to the anomaly of the broken symmetry by an anomaly-matching formula. We also derive the obstruction to the existence of a symmetry breaking phase with a local defect. We obtain these results using a long exact sequence of groups of invertible field theories, which we call the "symmetry breaking long exact sequence" (SBLES). The mathematical backbone of the SBLES is studied in a companion paper. Our work further develops the theory of higher Berry phase and its bulk-boundary correspondence, and serves as a new computational tool for classifying symmetry protected topological phases.
- Anomalies of non-invertible self-duality symmetries: fractionalization and gauging. 2023. https://arxiv.org/abs/2308.11707.
- An ∞\infty∞-categorical approach to R𝑅Ritalic_R-line bundles, R𝑅Ritalic_R-module Thom spectra, and twisted R𝑅Ritalic_R-homology. J. Topol., 7(3):869–893, 2014. https://arxiv.org/abs/1403.4325.
- Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol., 7(4):1077–1117, 2014. https://arxiv.org/abs/1403.4320.
- Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map. Geom. Topol., 22(7):3761–3825, 2018. https://arxiv.org/abs/1112.2203.
- The structure of the Spin cobordism ring. Ann. of Math. (2), 86:271–298, 1967.
- Pin cobordism and related topics. Comment. Math. Helv., 44:462–468, 1969.
- Clifford modules. Topology, 3(Supplement 1):3–38, 1964.
- J. F. Adams. On Chern characters and the structure of the unitary group. Proc. Cambridge Philos. Soc., 57:189–199, 1961.
- J. F. Adams. Vector fields on spheres. Ann. of Math. (2), 75:603–632, 1962.
- J. F. Adams. On the groups J(X)𝐽𝑋J(X)italic_J ( italic_X ). II. Topology, 3:137–171, 1965.
- J. F. Adams. Stable homotopy and generalised homology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, Ill.-London, 1974.
- Spinhℎ{}^{h}start_FLOATSUPERSCRIPT italic_h end_FLOATSUPERSCRIPT and further generalisations of spin. Journal of Geometry and Physics, 164:104174, 2021. https://arxiv.org/abs/2008.04934.
- D.W. Anderson. Universal coefficient theorems for K𝐾Kitalic_K-theory. 1969. https://faculty.tcu.edu/gfriedman/notes/Anderson-UCT.pdf.
- M. F. Atiyah. Bordism and cobordism. Proc. Cambridge Philos. Soc., 57:200–208, 1961.
- M. F. Atiyah. Thom complexes. Proc. London Math. Soc. (3), 11:291–310, 1961.
- J. F. Adams and G. Walker. On complex Stiefel manifolds. Proc. Cambridge Philos. Soc., 61:81–103, 1965.
- Christian Bär. Elliptic symbols. Math. Nachr., 201:7–35, 1999.
- A guide for computing stable homotopy groups. In Topology and quantum theory in interaction, volume 718 of Contemp. Math., pages 89–136. Amer. Math. Soc., Providence, RI, 2018. https://arxiv.org/abs/1801.07530.
- Cohomology with coefficients in symmetric cat-groups. An extension of Eilenberg-MacLane’s classification theorem. Mathematical Proceedings of the Cambridge Philosophical Society, 114(1):163–189, 1993.
- Line defect quantum numbers & anomalies. 2022. https://arxiv.org/abs/2206.15401.
- Jonathan Beardsley. Relative Thom spectra via operadic Kan extensions. Algebr. Geom. Topol., 17(2):1151–1162, 2017. https://arxiv.org/abs/1601.04123.
- James C. Becker. Extensions of cohomology theories. Illinois J. Math., 14:551–584, 1970.
- New gravitational instantons and universal spin structures. Physics Letters B, 77(2):181–184, 1978.
- The transfer map and fiber bundles. Topology, 14:1–12, 1975.
- The eta invariant, PincsuperscriptPin𝑐\mathrm{Pin}^{c}roman_Pin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT bordism, and equivariant SpincsuperscriptSpin𝑐\mathrm{Spin}^{c}roman_Spin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT bordism for cyclic 2222-groups. Pacific J. Math., 128(1):1–24, 1987.
- PincsuperscriptPin𝑐{\mathrm{Pin}^{c}}roman_Pin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT cobordism and equivariant SpincsuperscriptSpin𝑐{\mathrm{Spin}^{c}}roman_Spin start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT cobordism of cyclic 2-groups. Proceedings of the American Mathematical Society, 99(2):380–382, 1987.
- Connective real K𝐾Kitalic_K-theory of finite groups, volume 169 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
- Raoul Bott. Lectures on K(X)𝐾𝑋K(X)italic_K ( italic_X ). Mathematics Lecture Note Series. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- Edgar H. Brown, Jr. The Kervaire invariant of a manifold. In Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pages 65–71. Amer. Math. Soc., Providence, R.I., 1971.
- Equivariant function spaces and stable homotopy theory. I. Comment. Math. Helv., 49:1–34, 1974.
- R. Bott and R. Seeley. Some remarks on the paper of Callias. Communications in Mathematical Physics, 62(3):235–245, 1978.
- V. M. Buhštaber. Projectors in unitary cobordisms that are related to SUSU{\rm SU}roman_SU-theory. Uspehi Mat. Nauk, 27(6(168)):231–232, 1972.
- Constantine Callias. Axial anomalies and index theorems on open spaces. Communications in Mathematical Physics, 62(3):213–234, 1978.
- Jonathan A. Campbell. Homotopy theoretic classification of symmetry protected phases. 2017. https://arxiv.org/abs/1708.04264.
- Candidate phases for SU(2) adjoint QCD44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT with two flavors from 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supersymmetric Yang-Mills theory. 2018. https://arxiv.org/abs/1806.09592.
- Differentiable periodic maps. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33. Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964.
- Torsion in SUSU{\rm SU}roman_SU-bordism. Mem. Amer. Math. Soc., 60:74, 1966.
- Anomalies in the space of coupling constants and their dynamical applications I. SciPost Phys., 8(1):Paper No. 001, 57, 2020. https://arxiv.org/abs/1905.09315.
- Xuan Chen. Bundles of Irreducible Clifford Modules and the Existence of Spin Structures. ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–State University of New York at Stony Brook.
- Georgy Chernykh. Landweber exactness of the formal group law in c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-spherical bordism. 2022. https://arxiv.org/abs/2212.04552.
- Anomalies of non-invertible symmetries in (3+1)d. 2023. https://arxiv.org/abs/2308.11706.
- Anomalies and fermion zero modes on strings and domain walls. Nuclear Physics B, 250(1-4):427–436, 1985.
- M. C. Crabb and K. Knapp. James numbers. Math. Ann., 282(3):395–422, 1988.
- On exotic consistent anomalies in (1+1)d11𝑑(1+1)d( 1 + 1 ) italic_d: a ghost story. SciPost Phys., 10(5):Paper No. 119, 28, 2021. https://arxiv.org/abs/2009.07273.
- Symmetry-protected topological phases from decorated domain walls. Nature Communications, 5(1), mar 2014. https://arxiv.org/abs/1303.4301.
- Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies. Physical Review D, 102(4), aug 2020. https://arxiv.org/abs/1910.14046.
- SU𝑆𝑈SUitalic_S italic_U-linear operations in complex cobordism and the c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-spherical bordism theory. 2021. https://arxiv.org/abs/2106.11876.
- M. C. Crabb. On the KO𝐙/2𝐾subscriptO𝐙2K{\rm O}_{{\bf Z}/2}italic_K roman_O start_POSTSUBSCRIPT bold_Z / 2 end_POSTSUBSCRIPT-Euler class. I. Proc. Roy. Soc. Edinburgh Sect. A, 117(1-2):115–137, 1991.
- Larry W. Cusick. The cofibre of the transfer map. Proc. Amer. Math. Soc., 93(3):561–566, 1985.
- When the moduli space is an orbifold: Spontaneous breaking of continuous non-invertible symmetries. 2023. https://arxiv.org/abs/2309.06491.
- The anomaly that was not meant IIB. Fortschr. Phys., 70(1):Paper No. 2100168, 31, 2022. https://arxiv.org/abs/2107.14227.
- The chronicles of IIBordia: Dualities, bordisms, and the Swampland. 2023. https://arxiv.org/abs/2302.00007.
- Arun Debray. Invertible phases for mixed spatial symmetries and the fermionic crystalline equivalence principle. 2021. https://arxiv.org/abs/2102.02941.
- Arun Debray. Bordism for the 2-group symmetries of the heterotic and CHL strings. 2023. https://arxiv.org/abs/2304.14764.
- İ. Dibağ. J𝐽Jitalic_J-approximation of complex projective spaces by lens spaces. Pacific J. Math., 191(2):223–242, 1999.
- İ. Dibağ. Determination of the J𝐽Jitalic_J-groups of complex projective and lens spaces. K𝐾Kitalic_K-Theory, 29(1):27–74, 2003.
- Principal quasi-fibrations and fibre homotopy equivalence of bundles. Illinois J. Math., 3:285–305, 1959.
- Anomaly interplay in U(2)U2\rm U(2)roman_U ( 2 ) gauge theories. J. High Energy Phys., (5):098, 20, 2020. https://arxiv.org/abs/2001.07731.
- The algebra of anomaly interplay. SciPost Phys., 10(3):Paper No. 074, 41, 2021. https://arxiv.org/abs/2011.10102.
- Toric 2-group anomalies via cobordism. J. High Energy Phys., (7):Paper No. 19, 52, 2023. https://arxiv.org/abs/2302.12853. With an appendix by Arun Debray.
- The Euler class for connective ko𝑘ok{\rm o}italic_k roman_o-theory and an application to immersions of quaternionic projective space. Indiana Univ. Math. J., 28(6):1025–1034, 1979.
- P. Deligne and J. S. Milne. Tannakian Categories, pages 101–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982. https://www.jmilne.org/math/xnotes/tc.html.
- Duality, trace, and transfer. In Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), pages 81–102. PWN, Warsaw, 1980.
- Vladimir Drinfeld. Infinite-dimensional vector bundles in algebraic geometry. In Pavel Etingof, Vladimir Retakh, and I. M. Singer, editors, The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand, pages 263–304. Birkhäuser Boston, Boston, MA, 2006. https://arxiv.org/abs/math/0309155.
- On counting associative submanifolds and Seiberg-Witten monopoles. Pure Appl. Math. Q., 15(4):1047–1133, 2019. https://arxiv.org/abs/1712.08383.
- What bordism-theoretic anomaly cancellation can do for U. 2022. https://arxiv.org/abs/2210.04911.
- Adams spectral sequences for non-vector-bundle Thom spectra. 2023. https://arxiv.org/abs/2305.01678.
- Gauging noninvertible defects: a 2-categorical perspective. Lett. Math. Phys., 113(2):Paper No. 36, 42, 2023. https://arxiv.org/abs/2211.08436.
- Bosonization and anomaly indicators of (2+1)d21𝑑(2+1)d( 2 + 1 ) italic_d fermionic topological orders. To appear.
- Topological theory of Lieb-Schultz-Mattis theorems in quantum spin systems. Physical Review B, 101(22), jun 2020. https://arxiv.org/abs/1907.08204.
- S. Feder and S. Gitler. Stable homotopy types of stunted complex projective spaces. Proc. Cambridge Philos. Soc., 73:431–438, 1973.
- S. Feder and S. Gitler. The classification of stunted projective spaces by stable homotopy type. Trans. Amer. Math. Soc., 225:59–81, 1977.
- On Ramond-Ramond fields and K𝐾Kitalic_K-theory. J. High Energy Phys., (5):Paper 44, 14, 2000. https://arxiv.org/abs/hep-th/0002027.
- Invertible phases of matter with spatial symmetry. Adv. Theor. Math. Phys., 24(7):1773–1788, 2020. https://arxiv.org/abs/1901.06419.
- Reflection positivity and invertible topological phases. Geometry & Topology, 25(3):1165–1330, 2021. https://arxiv.org/abs/1604.06527.
- Exactly solvable model for a 4+1D41D4+1\mathrm{D}4 + 1 roman_D beyond-cohomology symmetry-protected topological phase. Phys. Rev. B, 101:155124, Apr 2020. https://arxiv.org/abs/1912.05565.
- Consistent orientation of moduli spaces. In The many facets of geometry, pages 395–419. Oxford Univ. Press, Oxford, 2010. https://arxiv.org/abs/0711.1909.
- Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Physical Review Letters, 100(9), March 2008. https://arxiv.org/abs/0707.1692.
- Paul M. N. Feehan and Thomas G. Leness. SO(3)SO3\rm SO(3)roman_SO ( 3 ) monopoles, level-one Seiberg-Witten moduli spaces, and Witten’s conjecture in low degrees. In Proceedings of the 1999 Georgia Topology Conference (Athens, GA), volume 124, pages 221–326, 2002. https://arxiv.org/abs/math/0106238.
- Daniel S. Freed. Lectures on field theory and topology, volume 133 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2019. Published for the Conference Board of the Mathematical Sciences.
- Relative quantum field theory. Comm. Math. Phys., 326(2):459–476, 2014. https://arxiv.org/abs/1212.1692.
- Søren Galatius. Lecture on invertible field theories. In Quantum field theory and manifold invariants, volume 28 of IAS/Park City Math. Ser., pages 347–402. Amer. Math. Soc., Providence, RI, [2021] ©2021. https://arxiv.org/abs/1912.08706.
- Dai-Freed anomalies in particle physics. J. High Energy Phys., (8):003, 77, 2019. https://arxiv.org/abs/1808.00009.
- V. Giambalvo. Cobordism of line bundles with a relation. Illinois J. Math., 17:442–449, 1973.
- V. Giambalvo. Pin and Pin’ cobordism. Proc. Amer. Math. Soc., 39:395–401, 1973.
- Symmetry protected topological phases and generalized cohomology. Journal of High Energy Physics, 2019, 2019. https://arxiv.org/abs/1712.07950.
- The 2-dimensional stable homotopy hypothesis. J. Pure Appl. Algebra, 223(10):4348–4383, 2019. https://arxiv.org/abs/1712.07218.
- Symmetric and exterior powers of categories. Transformation Groups, 19(1):57–103, Mar 2014. https://arxiv.org/abs/1110.4753.
- Theta, time reversal and temperature. Journal of High Energy Physics, 2017(5), May 2017. https://arxiv.org/abs/1703.00501.
- Stiefel-Whitney classes of real representations of finite groups. J. Algebra, 126(2):327–347, 1989.
- Une extension d’un théorème de Rohlin sur la signature. In Seminar on Real Algebraic Geometry (Paris, 1977/1978 and Paris, 1978/1979), volume 9 of Publ. Math. Univ. Paris VII, pages 69–80. Univ. Paris VII, Paris, 1980.
- The homotopy type of the cobordism category. Acta Mathematica, 202(2):195–239, 2009. https://arxiv.org/abs/math/0605249.
- Fermionic finite-group gauge theories and interacting symmetric/crystalline orders via cobordisms. Comm. Math. Phys., 376(2):1073–1154, 2020. https://arxiv.org/abs/1812.11959.
- The geometric cobordism hypothesis. 2021. https://arxiv.org/abs/2111.01095.
- Time reversal, SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) Yang-Mills and cobordisms: interacting topological superconductors/insulators and quantum spin liquids in 3+1D31𝐷3+1D3 + 1 italic_D. Ann. Physics, 394:244–293, 2018. https://arxiv.org/abs/1711.11587.
- Meng Guo. Some Calculations of Cobordism Groups and Their Applications in Physics. PhD thesis, Harvard University, 2018. https://dash.harvard.edu/bitstream/handle/1/40050106/GUO-DISSERTATION-2018.pdf?sequence=4.
- Fractional quantum numbers on solitons. Phys. Rev. Lett., 47:986–989, Oct 1981.
- Twisted spin cobordism and positive scalar curvature. J. Topol., 13(1):1–58, 2020. https://arxiv.org/abs/1311.3164.
- Nonorientable 4444-manifolds with fundamental group of order 2222. Trans. Amer. Math. Soc., 344(2):649–665, 1994.
- Anomaly matching in the symmetry broken phase: Domain walls, CPT, and the Smith isomorphism. SciPost Physics, 8(4), Apr 2020. https://arxiv.org/abs/1910.14039.
- Berry phase in quantum field theory: Diabolical points and boundary phenomena. Physical Review B, 102(24), dec 2020. https://arxiv.org/abs/2004.10758.
- R. P. Held and D. Sjerve. On the stable homotopy type of Thom complexes. Canadian J. Math., 25:1285–1294, 1973.
- Quadratic functions in geometry, topology, and M-theory. J. Differential Geom., 70(3):329–452, 07 2005. https://arxiv.org/abs/math/0211216.
- On certain 5-manifolds with fundamental group of order 2. Q. J. Math., 64(1):149–175, 2013. https://arxiv.org/abs/0903.5244.
- Chang-Tse Hsieh. Discrete gauge anomalies revisited. 2018. https://arxiv.org/abs/1808.02881.
- Anomaly inflow and p𝑝pitalic_p-form gauge theories. Comm. Math. Phys., 391(2):495–608, 2022. https://arxiv.org/abs/2003.11550.
- Jiahao Hu. Quaternionic Clifford modules, spinhℎ{}^{h}start_FLOATSUPERSCRIPT italic_h end_FLOATSUPERSCRIPT manifolds and symplectic K-theory. https://www.math.stonybrook.edu/~jiahao/Notes/spin_h.pdf.
- I. M. James. Spaces associated with Stiefel manifolds. Proc. London Math. Soc. (3), 9:115–140, 1959.
- I. M. James. The topology of Stiefel manifolds. London Mathematical Society Lecture Note Series, No. 24. Cambridge University Press, Cambridge-New York-Melbourne, 1976.
- Theo Johnson-Freyd. Spin, statistics, orientations, unitarity. Algebr. Geom. Topol., 17(2):917–956, 2017. https://arxiv.org/abs/1507.06297.
- Modeling stable one-types. Theory and Applications of Categories, 26(20):520–537, 2012. http://www.tac.mta.ca/tac/volumes/26/20/26-20.pdf.
- R. Jackiw and C. Rebbi. Solitons with fermion number ½. Phys. Rev. D, 13:3398–3409, Jun 1976.
- Anton Kapustin. Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology. 2014. https://arxiv.org/abs/1403.1467.
- A. Kitaev. On the classification of short-range entangled states. Simons Center for Geometry and Physics, 2013.
- Ryohei Kobayashi. Anomaly constraint on chiral central charge of (2+1)d21d(2+1)\mathrm{d}( 2 + 1 ) roman_d topological order. Phys. Rev. Res., 3:023107, May 2021. https://arxiv.org/abs/2101.01018.
- S. O. Kochman. Bordism, stable homotopy and Adams spectral sequences, volume 7 of Fields Institute Monographs. American Mathematical Society, Providence, RI, 1996.
- Katsuhiro Komiya. Oriented bordism and involutions. Osaka Math. J., 9:165–181, 1972.
- Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc., 78:981–987, 1972.
- M. Kreck. Some closed 4444-manifolds with exotic differentiable structure. In Algebraic topology, Aarhus 1982 (Aarhus, 1982), volume 1051 of Lecture Notes in Math., pages 246–262. Springer, Berlin, 1984.
- Higher-dimensional generalizations of Berry curvature. Physical Review B, 101(23), jun 2020. https://arxiv.org/abs/2001.03454.
- Comments on abelian Higgs models and persistent order. SciPost Physics, 6(1), Jan 2019. https://arxiv.org/abs/1705.04786.
- A calculation of Pin+superscriptPin\mathrm{Pin}^{+}roman_Pin start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT bordism groups. Commentarii Mathematici Helvetici, 65(1):434–447, Dec 1990.
- PinPin{\rm Pin}roman_Pin structures on low-dimensional manifolds. In Geometry of low-dimensional manifolds, 2 (Durham, 1989), volume 151 of London Math. Soc. Lecture Note Ser., pages 177–242. Cambridge Univ. Press, Cambridge, 1990.
- Fermionic symmetry protected topological phases and cobordisms. J. High Energy Phys., (12):052, front matter+20pp, 2015. https://arxiv.org/abs/1406.7329.
- Kee Yuen Lam. Fiber homotopic trivial bundles over complex projective spaces. Proc. Amer. Math. Soc., 33:211–212, 1972.
- Peter S. Landweber. On the symplectic bordism groups of the spaces Sp(n)Sp𝑛{\rm Sp}(n)roman_Sp ( italic_n ), HP(n)HP𝑛{\rm HP}(n)roman_HP ( italic_n ), and BSp(n)BSp𝑛{\rm BSp}(n)roman_BSp ( italic_n ). Michigan Math. J., 15:145–153, 1968.
- R. Lashof. Poincaré duality and cobordism. Trans. Amer. Math. Soc., 109:257–277, 1963.
- H. Blaine Lawson. Spinhℎ{}^{h}start_FLOATSUPERSCRIPT italic_h end_FLOATSUPERSCRIPT manifolds. 2023. https://arxiv.org/abs/2301.09683.
- Braiding statistics approach to symmetry-protected topological phases. Physical Review B, 86(11), sep 2012. https://arxiv.org/abs/1202.3120.
- Huaiyu Li. Discussions on Dai-Freed anomalies. Master’s thesis, Uppsala University, 2019. https://www.diva-portal.org/smash/get/diva2:1366363/FULLTEXT01.pdf.
- Harald Lindner. Adjunctions in monoidal categories. Manuscripta Math., 26(1-2):123–139, 1978.
- Equivariant stable homotopy theory, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. http://www.math.uchicago.edu/~may/BOOKS/equi.pdf.
- Real pinor bundles and real Lipschitz structures. Asian J. Math., 23(5):749–836, 2019. https://arxiv.org/abs/1606.07894.
- Twisted iterated algebraic K𝐾Kitalic_K-theory and topological T-duality for sphere bundles. Ann. K-Theory, 5(1):1–42, 2020. https://arxiv.org/abs/1601.06285.
- Some comments on 6D global gauge anomalies. PTEP. Prog. Theor. Exp. Phys., (8):Paper No. 08B103, 29, 2021. https://arxiv.org/abs/2012.11622.
- Bulk anyons as edge symmetries: Boundary phase diagrams of topologically ordered states. Phys. Rev. B, 104:075141, Aug 2021. https://arxiv.org/abs/2003.04328.
- Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach. Physical Review B, 86(12), sep 2012. https://arxiv.org/abs/1205.3156.
- Mark Mahowald. A short proof of the James periodicity of πk+p(Vk+m,m)subscript𝜋𝑘𝑝subscript𝑉𝑘𝑚𝑚\pi_{k+p}(V_{k+m,m})italic_π start_POSTSUBSCRIPT italic_k + italic_p end_POSTSUBSCRIPT ( italic_V start_POSTSUBSCRIPT italic_k + italic_m , italic_m end_POSTSUBSCRIPT ). Proc. Amer. Math. Soc., 16:512, 1965.
- Karl Heinz Mayer. Elliptische Differentialoperatoren und Ganzzahligkeitssätze für charakteristische Zahlen. Topology, 4:295–313, 1965.
- J. Peter May. E∞subscript𝐸E_{\infty}italic_E start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ring spaces and E∞subscript𝐸E_{\infty}italic_E start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT ring spectra. Lecture Notes in Mathematics, Vol. 577. Springer-Verlag, Berlin-New York, 1977. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave.
- J. Milnor. Spin structures on manifolds. Enseign. Math. (2), 9:198–203, 1963.
- M. Mahowald and R. James Milgram. Operations which detect 𝑆𝑞4superscript𝑆𝑞4\mathit{Sq}^{4}italic_Sq start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT in connective K𝐾Kitalic_K-theory and their applications. Quart. J. Math. Oxford Ser. (2), 27(108):415–432, 1976.
- Stable homotopy hypothesis in the Tamsamani model. Topology Appl., 316:Paper No. 108106, 40, 2022. https://arxiv.org/abs/2001.05577.
- Kaoru Morisugi. Graph constructions and transfer maps. Bull. Fac. Ed. Wakayama Univ. Natur. Sci., (59):1–9, 2009.
- Reflection structures and spin statistics in low dimensions. 2023. https://arxiv.org/abs/2301.06664.
- Ib Madsen and Ulrike Tillmann. The stable mapping class group and Q(ℂP+∞)𝑄ℂsubscriptsuperscriptPQ(\mathbb{C}\mathrm{P}^{\infty}_{+})italic_Q ( blackboard_C roman_P start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ). Invent. Math., 145(3):509–544, 2001.
- Cobordism conjecture, anomalies, and the string lamppost principle. J. High Energy Phys., (1):Paper No. 063, 46, 2021. https://arxiv.org/abs/2008.11729.
- Ib Madsen and Michael Weiss. The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2), 165(3):843–941, 2007. https://arxiv.org/abs/math/0212321.
- Masayoshi Nagase. SpinqsuperscriptSpin𝑞{\rm Spin}^{q}roman_Spin start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT structures. J. Math. Soc. Japan, 47(1):93–119, 1995.
- Hoang Kim Nguyen. On the infinite loop space structure of the cobordism category. Algebraic & Geometric Topology, 17(2):1021–1040, 2017. https://arxiv.org/abs/1505.03490.
- S. P. Novikov. Methods of algebraic topology from the point of view of cobordism theory. Izv. Akad. Nauk SSSR Ser. Mat., 31:855–951, 1967.
- Mohammad Obiedat. On J𝐽Jitalic_J-orders of elements of KO(𝐂Pm)𝐾O𝐂superscriptP𝑚K{\rm O}({\bf C}{\rm P}^{m})italic_K roman_O ( bold_C roman_P start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ). J. Math. Soc. Japan, 53(4):919–932, 2001. https://arxiv.org/abs/math/9906027.
- Quaternionic monopoles. Comm. Math. Phys., 180(2):363–388, 1996. https://arxiv.org/abs/alg-geom/9505029.
- Deepam Patel. De Rham ℰℰ\mathcal{E}caligraphic_E-factors. Inventiones mathematicae, 190(2):299–355, Nov 2012. http://www.math.purdue.edu/~patel471/deRhamep.pdf.
- F. P. Peterson. Lectures on Cobordism Theory. Lectures in Mathematics. Kinokuniya Book Store Co., Ltd., 1968.
- Lattice homotopy constraints on phases of quantum magnets. Physical Review Letters, 119(12), sep 2017. https://arxiv.org/abs/1703.06882.
- Fred William Roush. Transfer in generalized cohomology theories. ProQuest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)–Princeton University.
- Relating cut and paste invariants and TQFTS. Q. J. Math., 73(2):579–607, 2022. https://arxiv.org/abs/1803.02939.
- Oscar Randal-Williams. Monodromy and mapping class groups of 3-dimensional hypersurfaces. 2023. https://arxiv.org/abs/2308.06397.
- Hisham Sati. Geometric and topological structures related to M-branes. In Superstrings, geometry, topology, and C∗superscript𝐶normal-∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebras, volume 81 of Proc. Sympos. Pure Math., pages 181–236. Amer. Math. Soc., Providence, RI, 2010. https://arxiv.org/abs/1001.5020.
- Hisham Sati. Geometric and topological structures related to M-branes II: Twisted string and stringc𝑐{}^{c}start_FLOATSUPERSCRIPT italic_c end_FLOATSUPERSCRIPT structures. J. Aust. Math. Soc., 90(1):93–108, 2011. https://arxiv.org/abs/1007.5419.
- Hisham Sati. Twisted topological structures related to M-branes. Int. J. Geom. Methods Mod. Phys., 8(5):1097–1116, 2011. https://arxiv.org/abs/1008.1755.
- Hisham Sati. Twisted topological structures related to M-branes II: twisted Wu and Wuc𝑐{}^{c}start_FLOATSUPERSCRIPT italic_c end_FLOATSUPERSCRIPT structures. Int. J. Geom. Methods Mod. Phys., 9(7):1250056, 21, 2012. https://arxiv.org/abs/1109.4461.
- Hisham Sati. Ninebrane structures. Int. J. Geom. Methods Mod. Phys., 12(4):1550041, 24, 2015. https://arxiv.org/abs/1405.7686.
- Katsuyuki Shibata. Oriented and weakly complex bordism algebra of free periodic maps. Trans. Amer. Math. Soc., 177:199–220, 1973.
- François Sigrist. Deux propriétés des groupes J(CP2n)𝐽𝐶superscript𝑃2𝑛J(CP^{2n})italic_J ( italic_C italic_P start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT ). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 59(5):413–415 (1976), 1975.
- Christopher J. Schommer-Pries. Central extensions of smooth 2-groups and a finite-dimensional string 2-group. Geom. Topol., 15(2):609–676, 2011. https://arxiv.org/abs/0911.2483.
- Christopher Schommer-Pries. Invertible topological field theories. 2017. https://arxiv.org/abs/1712.08029.
- Many-body topological invariants in fermionic symmetry-protected topological phases: Cases of point group symmetries. Phys. Rev. B, 95:205139, May 2017. https://arxiv.org/abs/1609.05970.
- Fivebrane structures. Rev. Math. Phys., 21(10):1197–1240, 2009. https://arxiv.org/abs/0805.0564.
- Twisted differential string and fivebrane structures. Comm. Math. Phys., 315(1):169–213, 2012. https://arxiv.org/abs/0910.4001.
- Luuk Stehouwer. Interacting SPT phases are not Morita invariant. Lett. Math. Phys., 112(3):Paper No. 64, 25, 2022. https://arxiv.org/abs/2110.07408.
- Robert E. Stong. Determination of H∗(BO(k,⋯,∞),Z2)superscript𝐻∗BO𝑘⋯subscript𝑍2H^{\ast}({\rm BO}(k,\cdots,\infty),Z_{2})italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_BO ( italic_k , ⋯ , ∞ ) , italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and H∗(BU(k,⋯,∞),Z2)superscript𝐻∗BU𝑘⋯subscript𝑍2H^{\ast}({\rm BU}(k,\cdots,\infty),Z_{2})italic_H start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( roman_BU ( italic_k , ⋯ , ∞ ) , italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Trans. Amer. Math. Soc., 107:526–544, 1963.
- Robert E. Stong. Notes on cobordism theory. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes.
- R. E. Stong. Bordism and involutions. Ann. of Math. (2), 90:47–74, 1969.
- Stephan Stolz. Exotic structures on 4444-manifolds detected by spectral invariants. Invent. Math., 94(1):147–162, 1988.
- Twisted Morava K-theory and E-theory. J. Topol., 8(4):887–916, 2015. https://arxiv.org/abs/1109.3867.
- Gapped boundary phases of topological insulators via weak coupling. 2016. https://arxiv.org/abs/1602.04251.
- Variations of rational higher tangential structures. J. Geom. Phys., 130:229–248, 2018. https://arxiv.org/abs/1612.06983.
- Generalized homology and atiyah-hirzebruch spectral sequence in crystalline symmetry protected topological phenomena. 2023.
- Twisted Morava K-theory and connective covers of Lie groups. Algebr. Geom. Topol., 21(5):2223–2255, 2021. https://arxiv.org/abs/1711.05389.
- Hirotaka Tamanoi. Multiplicative indecomposable splittings of MSp[2]𝑀subscriptSpdelimited-[]2M{\rm Sp}_{[2]}italic_M roman_Sp start_POSTSUBSCRIPT [ 2 ] end_POSTSUBSCRIPT. Math. Z., 225(4):577–610, 1997.
- Gauging spatial symmetries and the classification of topological crystalline phases. Physical Review X, 8(1), mar 2018. https://arxiv.org/abs/1612.00846.
- ’t Hooft, Gerard. Topology of the gauge condition and new confinement phases in non-abelian gauge theories. Nuclear Physics: B, 190(3):455–478, 1981.
- René Thom. Quelques propriétés globales des variétés differentiables. PhD thesis, University of Paris, 1954.
- DJ Thouless. Quantization of particle transport. Physical Review B, 27(10):6083, 1983.
- Ryan Thorngren. Topological terms and phases of sigma models. 2017. https://arxiv.org/abs/1710.02545.
- Alex Turzillo. Diagrammatic state sums for 2D pin-minus TQFTs. J. High Energy Phys., (3):019, 26, 2020. https://arxiv.org/abs/1811.12654.
- Anomalous symmetries end at the boundary. Journal of High Energy Physics, 2021(9), sep 2021. https://arxiv.org/abs/2012.15861.
- Why are fractional charges of orientifolds compatible with Dirac quantization? SciPost Phys., 7:58, 2019. https://arxiv.org/abs/1805.02772.
- Fuichi Uchida. Exact sequences involving cobordism groups of immersions. Osaka Math. J., 6:397–408, 1969.
- Fuichi Uchida. The structure of the cobordism groups B(n,k)𝐵𝑛𝑘B(n,\,k)italic_B ( italic_n , italic_k ) of bundles over manifolds with involution. Osaka Math. J., 7:193–202, 1970.
- Grigory E Volovik. The universe in a helium droplet, volume 117. OUP Oxford, 2003.
- C. T. C. Wall. Determination of the cobordism ring. Ann. of Math. (2), 72:292–311, 1960.
- Grant Walker. Estimates for the complex and quaternionic James numbers. Quart. J. Math. Oxford Ser. (2), 32(128):467–489, 1981.
- Christoph Weis. The Drinfel’d centres of String 2-groups. 2022. https://arxiv.org/abs/2202.01271.
- Xiao-Gang Wen. Topological orders and edge excitations in fractional quantum Hall states. Advances in Physics, 44(5):405–473, oct 1995. https://arxiv.org/abs/cond-mat/9506066.
- Edward Witten. An SU(2) anomaly. Physics Letters B, 117(5):324–328, 1982.
- Edward Witten. Quantum field theory and the Jones polynomial. Communications in Mathematical Physics, 121(3):351–399, 1989.
- Edward Witten. Fermion path integrals and topological phases. Reviews of Modern Physics, 88(3), jul 2016. https://arxiv.org/abs/1508.04715.
- Edward Witten. The “parity” anomaly on an unorientable manifold. Physical Review B, 94(19), nov 2016. https://arxiv.org/abs/1605.02391.
- Domain wall decorations, anomalies and spectral sequences in bosonic topological phases, 2021. https://arxiv.org/abs/2104.13233.
- R.M.W. Wood. K-theory and the complex projective plane. 1963.
- Classification of interacting electronic topological insulators in three dimensions. Science, 343(6171):629–631, feb 2014. https://arxiv.org/abs/1306.3238.
- Flow of (higher) berry curvature and bulk-boundary correspondence in parametrized quantum systems. 2021. https://arxiv.org/abs/2112.07748.
- Higher anomalies, higher symmetries, and cobordisms I: classification of higher-symmetry-protected topological states and their boundary fermionic/bosonic anomalies via a generalized cobordism theory. Ann. Math. Sci. Appl., 4(2):107–311, 2019. https://arxiv.org/abs/1812.11967.
- Beyond standard models and grand unifications: anomalies, topological terms, and dynamical constraints via cobordisms. J. High Energy Phys., (7):062, 90, 2020. https://arxiv.org/abs/1910.14668.
- Nonperturbative definition of the standard models. Phys. Rev. Res., 2:023356, Jun 2020. https://arxiv.org/abs/1809.11171.
- A new SU(2)SU2\rm SU(2)roman_SU ( 2 ) anomaly. J. Math. Phys., 60(5):052301, 23, 2019. https://arxiv.org/abs/1810.00844.
- Higher anomalies, higher symmetries, and cobordisms II: Lorentz symmetry extension and enriched bosonic/fermionic quantum gauge theory. Ann. Math. Sci. Appl., 5(2):171–257, 2020. https://arxiv.org/abs/1912.13504.
- Gauge enhanced quantum criticality beyond the standard model. Phys. Rev. D, 106:025013, Jul 2022. https://arxiv.org/abs/2106.16248.
- Charles Zhaoxi Xiong. Minimalist approach to the classification of symmetry protected topological phases. Journal of Physics A: Mathematical and Theoretical, 51(44):445001, oct 2018. https://arxiv.org/abs/1701.00004.
- Mayuko Yamashita. Differential models for the Anderson dual to bordism theories and invertible QFT’s, II. 2021. https://arxiv.org/abs/2110.14828.
- Mayuko Yamashita. Invertible QFTs and differential Anderson duals. 2023. https://arxiv.org/abs/2304.08833.
- Dyonic Lieb-Schultz-Mattis theorem and symmetry protected topological phases in decorated dimer models. Physical Review B, 98(12), sep 2018. https://arxiv.org/abs/1705.05421.
- Kazuya Yonekura. On the cobordism classification of symmetry protected topological phases. Comm. Math. Phys., 368(3):1121–1173, 2019. https://arxiv.org/abs/1803.10796.
- Zen-ichi Yosimura. Universal coefficient sequences for cohomology theories of CW-spectra. Osaka J. Math., 12(2):305–323, 1975.
- Differential models for the Anderson dual to bordism theories and invertible QFT’s, I. 2021. https://arxiv.org/abs/2106.09270.