Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Preserving AI-Accelerated Simulations of Plasma Turbulence (2309.16400v1)

Published 28 Sep 2023 in physics.comp-ph, cs.AI, and physics.plasm-ph

Abstract: Turbulence in fluids, gases, and plasmas remains an open problem of both practical and fundamental importance. Its irreducible complexity usually cannot be tackled computationally in a brute-force style. Here, we combine Large Eddy Simulation (LES) techniques with Machine Learning (ML) to retain only the largest dynamics explicitly, while small-scale dynamics are described by an ML-based sub-grid-scale model. Applying this novel approach to self-driven plasma turbulence allows us to remove large parts of the inertial range, reducing the computational effort by about three orders of magnitude, while retaining the statistical physical properties of the turbulent system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, Introduction to quantum turbulence, Proceedings of the National Academy of Sciences 111, 4647 (2014), https://www.pnas.org/doi/pdf/10.1073/pnas.1400033111 .
  2. W. Chamani, S. Dörschner, and D. R. G. Schleicher, Turbulent gas accretion between supermassive black-holes and star-forming rings in the circumnuclear disk, Astronomy & Astrophysics 602, A84 (2017).
  3. S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annual Review of Fluid Mechanics 52, 477 (2020), https://doi.org/10.1146/annurev-fluid-010719-060214 .
  4. S. Pandey, J. Schumacher, and K. R. Sreenivasan, A perspective on machine learning in turbulent flows, Journal of Turbulence 21, 567 (2020), https://doi.org/10.1080/14685248.2020.1757685 .
  5. R. Vinuesa and S. L. Brunton, Enhancing computational fluid dynamics with machine learning, Nature Computational Science 2, 358 (2022).
  6. P. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, 2015).
  7. P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan, Extreme events in computational turbulence, Proceedings of the National Academy of Sciences 112, 12633 (2015).
  8. A. Mann, Stabilizing turbulence in fusion stellarators, Proceedings of the National Academy of Sciences 114, 1217 (2017), https://www.pnas.org/doi/pdf/10.1073/pnas.1618480113 .
  9. B. Scott, Turbulence and Instabilities in Magnetised Plasmas, Volume 1, 2053-2563 (IOP Publishing, 2021).
  10. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Springer International Publishing, 2016).
  11. S. J. Camargo, D. Biskamp, and B. D. Scott, Resistive drift‐wave turbulence, Physics of Plasmas 2, 48 (1995), https://doi.org/10.1063/1.871116 .
  12. S. Schoenholz and E. D. Cubuk, Jax md: a framework for differentiable physics, Advances in Neural Information Processing Systems 33, 11428 (2020).
  13. Z. Warhaft, Turbulence in nature and in the laboratory, Proceedings of the National Academy of Sciences 99, 2481 (2002), https://www.pnas.org/doi/pdf/10.1073/pnas.012580299 .
  14. Comparisons for the dissipative range are given in the supplementary information.
  15. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations (2017).
  16. A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems, Computer Methods in Applied Mechanics and Engineering 365, 113028 (2020).
  17. M. Wilczek, A. Daitche, and R. Friedrich, On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from gaussianity, Journal of Fluid Mechanics 676, 191–217 (2011).
  18. B. G. Elmegreen and J. Scalo, Interstellar turbulence i: Observations and processes, Annual Review of Astronomy and Astrophysics 42, 211 (2004), https://doi.org/10.1146/annurev.astro.41.011802.094859 .
  19. M. Belkin and P. Niyogi, Using manifold stucture for partially labeled classification, in Advances in neural information processing systems (2002) pp. 929–936.
  20. P. Bérard, G. Besson, and S. Gallot, Embedding riemannian manifolds by their heat kernel, Geometric & Functional Analysis GAFA 4, 373 (1994).
  21. P. Holl, V. Koltun, and N. Thuerey, Learning to control pdes with differentiable physics (2020), arXiv:2001.07457 [cs.LG] .
  22. A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, Journal of Computational Physics 1, 119 (1966).
  23. A. Zeiler, D. Biskamp, and J. F. Drake, Three‐dimensional collisional drift‐wave turbulence: Role of magnetic shear, Physics of Plasmas 3, 3947 (1996), https://doi.org/10.1063/1.871566 .
  24. V. Bratanov, F. Jenko, and E. Frey, New class of turbulence in active fluids, Proceedings of the National Academy of Sciences 112, 15048 (2015), https://www.pnas.org/doi/pdf/10.1073/pnas.1509304112 .
  25. J. Park and H. Choi, Toward neural-network-based large eddy simulation: application to turbulent channel flow, Journal of Fluid Mechanics 914, A16 (2021).
  26. H. Pitsch, Large-eddy simulation of turbulent combustion, Annual Review of Fluid Mechanics 38, 453 (2006), https://doi.org/10.1146/annurev.fluid.38.050304.092133 .
  27. S. A. Orszag, Analytical theories of turbulence, Journal of Fluid Mechanics 41, 363–386 (1970).
  28. K. Cranmer, J. Brehmer, and G. Louppe, The frontier of simulation-based inference, Proceedings of the National Academy of Sciences 117, 30055 (2020), https://www.pnas.org/doi/pdf/10.1073/pnas.1912789117 .
  29. A. Mann, Nascent exascale supercomputers offer promise, present challenges, Proceedings of the National Academy of Sciences 117, 22623 (2020), https://www.pnas.org/doi/pdf/10.1073/pnas.2015968117 .
  30. P. G. Lemarié-Rieusset, Recent developments in the Navier-Stokes problem (CRC press, 2002).
  31. M. Lesieur, O. Métais, and P. Comte, Large-eddy simulations of turbulence (Cambridge university press, 2005).
  32. D. Biskamp, Magnetohydrodynamic turbulence, Plasma Physics and Controlled Fusion 45, 1827 (2003).
  33. A. Hasegawa and K. Mima, Stationary spectrum of strong turbulence in magnetized nonuniform plasma, Phys. Rev. Lett. 39, 205 (1977).
  34. H. Goedbloed and R. Keppens, The super-alfvénic rotational instability in accretion disks about black holes, The Astrophysical Journal Supplement Series 259, 65 (2022).
  35. J. P. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, 2007).
  36. S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences 113, 3932 (2016), https://www.pnas.org/doi/pdf/10.1073/pnas.1517384113 .
  37. T. M. George, G. E. Manucharyan, and A. F. Thompson, Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence, Nature Communications 12, 10.1038/s41467-020-20779-9 (2021).
  38. J. Bae H. and P. Koumoutsakos, Scientific multi-agent reinforcement learning for wall-models of turbulent flows, Nature Communications 13, 10.1038/s41467-022-28957-7 (2022).
  39. M. James and M. Wilczek, Vortex dynamics and lagrangian statistics in a model for active turbulence, The European Physical Journal E 41, 10.1140/epje/i2018-11625-8 (2018).
  40. E. G. Zweibel, Ambipolar drift in a turbulent medium, The Astrophysical Journal 567, 962 (2002).
  41. E. Ott, Introduction and overview, in Chaos in Dynamical Systems (Cambridge University Press, 2002) p. 1–23, 2nd ed.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com