Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BEVHeight++: Toward Robust Visual Centric 3D Object Detection (2309.16179v1)

Published 28 Sep 2023 in cs.CV

Abstract: While most recent autonomous driving system focuses on developing perception methods on ego-vehicle sensors, people tend to overlook an alternative approach to leverage intelligent roadside cameras to extend the perception ability beyond the visual range. We discover that the state-of-the-art vision-centric bird's eye view detection methods have inferior performances on roadside cameras. This is because these methods mainly focus on recovering the depth regarding the camera center, where the depth difference between the car and the ground quickly shrinks while the distance increases. In this paper, we propose a simple yet effective approach, dubbed BEVHeight++, to address this issue. In essence, we regress the height to the ground to achieve a distance-agnostic formulation to ease the optimization process of camera-only perception methods. By incorporating both height and depth encoding techniques, we achieve a more accurate and robust projection from 2D to BEV spaces. On popular 3D detection benchmarks of roadside cameras, our method surpasses all previous vision-centric methods by a significant margin. In terms of the ego-vehicle scenario, our BEVHeight++ possesses superior over depth-only methods. Specifically, it yields a notable improvement of +1.9% NDS and +1.1% mAP over BEVDepth when evaluated on the nuScenes validation set. Moreover, on the nuScenes test set, our method achieves substantial advancements, with an increase of +2.8% NDS and +1.7% mAP, respectively.

Citations (17)

Summary

We haven't generated a summary for this paper yet.