Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Adaptive Online Learning Using Refined Discretization (2309.16044v2)

Published 27 Sep 2023 in cs.LG and stat.ML

Abstract: We study unconstrained Online Linear Optimization with Lipschitz losses. Motivated by the pursuit of instance optimality, we propose a new algorithm that simultaneously achieves ($i$) the AdaGrad-style second order gradient adaptivity; and ($ii$) the comparator norm adaptivity also known as "parameter freeness" in the literature. In particular, - our algorithm does not employ the impractical doubling trick, and does not require an a priori estimate of the time-uniform Lipschitz constant; - the associated regret bound has the optimal $O(\sqrt{V_T})$ dependence on the gradient variance $V_T$, without the typical logarithmic multiplicative factor; - the leading constant in the regret bound is "almost" optimal. Central to these results is a continuous time approach to online learning. We first show that the aimed simultaneous adaptivity can be achieved fairly easily in a continuous time analogue of the problem, where the environment is modeled by an arbitrary continuous semimartingale. Then, our key innovation is a new discretization argument that preserves such adaptivity in the discrete time adversarial setting. This refines a non-gradient-adaptive discretization argument from (Harvey et al., 2023), both algorithmically and analytically, which could be of independent interest.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com