Gravitational Waves in the Circular Restricted Three Body Problem (2309.15510v2)
Abstract: The prospect of unprecedented high-quality data of gravitational waves in the upcoming decades demands a theoretical effort to optimally study and analyze the signals that next generation detectors will provide. Here we study the gravitational wave emission and related dynamics during the inspiralling phase of the Circular Restricted Three Body Problem, a modification of the conventional binary scenario in which a small third object co-rotates with the parent binary system. Specifically, we obtain analytic expressions for the emitted power, frequency variation and other dynamical variables that describe the evolution of the system. As a key highlight, we find that the presence of the third body actually slows down the coalescence of the binary, which can be partially interpreted as an effective rescaling of the binary's chirp-mass. Our analysis assumes semi-Keplerian orbits for the particles and a highly mass asymmetric parent binary needed for the stability of orbits.
- Abbott B P et al. (LIGO Scientific, Virgo) 2016 Phys. Rev. Lett. 116 061102 (Preprint 1602.03837)
- Einstein A 1916 Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 688–696
- Einstein A 1918 Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 154–167
- Nakamura T and Oohara K i 1983 Phys. Lett. A 98 403–406
- Wardell Z E 2002 Mon. Not. Roy. Astron. Soc. 334 149 (Preprint gr-qc/0206059)
- Gultekin K, Coleman Miller M and Hamilton D P 2006 Astrophys. J. 640 156–166 (Preprint astro-ph/0509885)
- Chiba T, Imai T and Asada H 2007 Mon. Not. Roy. Astron. Soc. 377 269–272 (Preprint astro-ph/0609773)
- Campanelli M, Lousto C O and Zlochower Y 2008 Phys. Rev. D 77 101501 (Preprint 0710.0879)
- Torigoe Y, Hattori K and Asada H 2009 Phys. Rev. Lett. 102 251101 (Preprint 0906.1448)
- Asada H 2009 Phys. Rev. D 80 064021 (Preprint 0907.5091)
- Galaviz P and Bruegmann B 2011 Phys. Rev. D 83 084013 (Preprint 1012.4423)
- Dmitrašinović V, Šuvakov M and Hudomal A 2014 Phys. Rev. Lett. 113 101102 (Preprint 1501.03405)
- Fiziev P P 2016 (Preprint 1609.02604)
- Meiron Y, Kocsis B and Loeb A 2017 Astrophys. J. 834 200 (Preprint 1604.02148)
- Lim H and Rodriguez C L 2020 Phys. Rev. D 102 064033 (Preprint 2001.03654)
- Will C M 2021 Phys. Rev. D 103 063003 (Preprint 2011.13286)
- Kuntz A 2022 Phys. Rev. D 105 024017 (Preprint 2112.05167)
- Kuntz A and Leyde K 2023 Phys. Rev. D 108 024002 (Preprint 2212.09753)
- Sicardy B 2010 Celestial Mechanics and Dynamical Astronomy 107 145–155
- Schnittman J D 2010 Astrophys. J. 724 39–48 (Preprint 1006.0182)
- Yamada K and Asada H 2012 Phys. Rev. D 86 124029 (Preprint 1212.0754)
- Huang G and Wu X 2014 Phys. Rev. D 89 124034
- Yamada K, Tsuchiya T and Asada H 2015 Phys. Rev. D 91 124016 (Preprint 1505.04534)
- Maggiore M 2008 Gravitational Waves. Vol. 1: Theory and Experimets (Oxford University Press)
- Wong R 2001 Asymptotic Approximations of Integrals (Society for Industrial and Applied Mathematics)
- Gurfil P and Seidelmann P K 2016 Celestial Mechanics and Astrodynamics: Theory and Practice (Springer Berlin, Heidelberg)
- Krefetz E 1967 Astron. J. 72 471
- Seto N and Muto T 2010 Phys. Rev. D 81 103004 (Preprint 1005.3114)
- Hu Q and Veitch J 2022 Phys. Rev. D 106 044042 (Preprint 2205.08448)
- Guo H K and Miller A 2022 (Preprint 2205.10359)
- Huerta E A and Gair J R 2011 Phys. Rev. D 83 044021 (Preprint 1011.0421)
- Jiang N et al. 2022 (Preprint 2201.11633)
- Gair J R, Tang C and Volonteri M 2010 Phys. Rev. D 81 104014 (Preprint 1004.1921)
- Colpi M et al. 2024 (Preprint 2402.07571)