Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invertibility of Condensation Defects and Symmetries of 2 + 1d QFTs (2309.15181v1)

Published 26 Sep 2023 in hep-th, cond-mat.str-el, math-ph, math.MP, and math.QA

Abstract: We characterize discrete (anti-)unitary symmetries and their non-invertible generalizations in $2+1$d topological quantum field theories (TQFTs) through their actions on line operators and fusion spaces. We explain all possible sources of non-invertibility that can arise in this context. Our approach gives a simple $2+1$d proof that non-invertible generalizations of unitary symmetries exist if and only if a bosonic TQFT contains condensable bosonic line operators (i.e., these non-invertible symmetries are necessarily "non-intrinsic"). Moving beyond unitary symmetries and their non-invertible cousins, we define a non-invertible generalization of time-reversal symmetries and derive various properties of TQFTs with such symmetries. Finally, using recent results on 2-categories, we extend our results to corresponding statements in $2+1$d quantum field theories that are not necessarily topological.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. D. Gaiotto, A. Kapustin, N. Seiberg & B. Willett, “Generalized Global Symmetries”, JHEP 1502, 172 (2015), arXiv:1412.5148 ​[hep-th]
  2. C. Cordova, T. T. Dumitrescu, K. Intriligator & S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond”, arXiv:2205.09545 ​[hep-th], in “2022 Snowmass Summer Study”
  3. L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki & A. Tiwari, “Non-invertible higher-categorical symmetries”, SciPost Phys. 14, 007 (2023), arXiv:2204.06564 ​[hep-th]
  4. L. Bhardwaj, S. Schafer-Nameki & A. Tiwari, “Unifying Constructions of Non-Invertible Symmetries”, arXiv:2212.06159 ​[hep-th]
  5. L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki & A. Tiwari, “Non-Invertible Symmetry Webs”, arXiv:2212.06842 ​[hep-th]
  6. C. Copetti, M. Del Zotto, K. Ohmori & Y. Wang, “Higher Structure of Chiral Symmetry”, arXiv:2305.18282 ​[hep-th]
  7. A. Kapustin & N. Saulina, “Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory”, arXiv:1012.0911 ​[hep-th]
  8. J. Fuchs, C. Schweigert & A. Valentino, “Bicategories for Boundary Conditions and for Surface Defects in 3-d TFT”, Communications in Mathematical Physics 321, 543 (2013)
  9. T. Johnson-Freyd, “On the Classification of Topological Orders”, Communications in Mathematical Physics 393, 989 (2022)
  10. M. Buican & H. Jiang, “1-form symmetry, isolated 𝒩𝒩\mathcal{N}caligraphic_N = 2 SCFTs, and Calabi-Yau threefolds”, JHEP 2112, 024 (2021), arXiv:2106.09807 ​[hep-th]
  11. T. JOHNSON-FREYD & M. YU, “FUSION 2-CATEGORIES WITH NO LINE OPERATORS ARE GROUPLIKE”, Bulletin of the Australian Mathematical Society 104, 434 (2021)
  12. K. Roumpedakis, S. Seifnashri & S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects”, arXiv:2204.02407 ​[hep-th]
  13. I. Brunner & D. Roggenkamp, “B-type defects in Landau-Ginzburg models”, JHEP 0708, 093 (2007), arXiv:0707.0922 ​[hep-th]
  14. D. Gaiotto, “Domain Walls for Two-Dimensional Renormalization Group Flows”, JHEP 1212, 103 (2012), arXiv:1201.0767 ​[hep-th]
  15. A. Konechny, “RG boundaries and Cardy’s variational ansatz for multiple perturbations”, arXiv:2306.13719 ​[hep-th]
  16. C. Bachas, J. de Boer, R. Dijkgraaf & H. Ooguri, “Permeable conformal walls and holography”, JHEP 0206, 027 (2002), hep-th/0111210
  17. C. P. Bachas, I. Brunner, M. R. Douglas & L. Rastelli, “Calabi’s diastasis as interface entropy”, Phys. Rev. D 90, 045004 (2014), arXiv:1311.2202 ​[hep-th]
  18. D. D. Thibault, “Drinfeld centers and Morita equivalence classes of fusion 2-categories”, arXiv preprint arXiv:2211.04917 90, D. D. Thibault (2022)
  19. G. W. Moore & N. Seiberg, “Classical and Quantum Conformal Field Theory”, Commun. Math. Phys. 123, 177 (1989)
  20. P. Etingof, S. Gelaki, D. Nikshych & V. Ostrik, “Tensor categories”, American Mathematical Soc. (2016)
  21. A. Davydov, M. Mueger, D. Nikshych & V. Ostrik, “The Witt group of non-degenerate braided fusion categories”, arXiv:1009.2117 ​[math.QA]
  22. D. Gaiotto & T. Johnson-Freyd, “Condensations in higher categories”, arXiv:1905.09566 ​[math.CT]
  23. Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam & S.-H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions”, Commun. Math. Phys. 402, 489 (2023), arXiv:2204.09025 ​[hep-th]
  24. P. Deligne, “Catégories tensorielles”, Mosc. Math. J 2, 227 (2002)
  25. L. Bhardwaj, S. Schafer-Nameki & J. Wu, “Universal Non-Invertible Symmetries”, Fortsch. Phys. 70, 2200143 (2022), arXiv:2208.05973 ​[hep-th]
  26. T. Bartsch, M. Bullimore, A. E. V. Ferrari & J. Pearson, “Non-invertible Symmetries and Higher Representation Theory I”, arXiv:2208.05993 ​[hep-th]
  27. J. Greenough, “Monoidal 2-structure of bimodule categories”, Journal of Algebra 324, 1818 (2010)
  28. R. Radhakrishnan, “On Reconstructing Finite Gauge Group from Fusion Rules”, arXiv:2302.08419 ​[hep-th]
  29. J. Kaidi, K. Ohmori & Y. Zheng, “Symmetry TFTs for Non-Invertible Defects”, arXiv:2209.11062 ​[hep-th]
  30. J. Kaidi, E. Nardoni, G. Zafrir & Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries”, arXiv:2301.07112 ​[hep-th]
  31. Y. Choi, H. T. Lam & S.-H. Shao, “Noninvertible Time-Reversal Symmetry”, Phys. Rev. Lett. 130, 131602 (2023), arXiv:2208.04331 ​[hep-th]
  32. D. Belov & G. W. Moore, “Classification of Abelian spin Chern-Simons theories”, hep-th/0505235
  33. S. D. Stirling, “Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories”, arXiv:0807.2857 ​[hep-th]
  34. A. Kapustin & N. Saulina, “Topological boundary conditions in abelian Chern–Simons theory”, Nuclear Physics B 845, 393 (2011)
  35. D. Delmastro & J. Gomis, “Symmetries of Abelian Chern-Simons Theories and Arithmetic”, JHEP 2103, 006 (2021), arXiv:1904.12884 ​[hep-th]
  36. L. Wang & Z. Wang, “In and around abelian anyon models”, Journal of Physics A: Mathematical and Theoretical 53, 505203 (2020)
  37. L. Kong & I. Runkel, “Cardy Algebras and Sewing Constraints, I”, Communications in Mathematical Physics 292, I. Runkel (2009)
  38. S. Gelaki, D. Naidu & D. Nikshych, “Centers of graded fusion categories”, arXiv:0905.3117 ​[math.QA]
  39. M. Müger, “On the structure of modular categories”, Proceedings of the London Mathematical Society 87, 291 (2003)
  40. V. Drinfeld, S. Gelaki, D. Nikshych & V. Ostrik, “On braided fusion categories I”, https://arxiv.org/abs/0906.0620
  41. M. Buican & R. Radhakrishnan, “Galois orbits of TQFTs: symmetries and unitarity”, JHEP 2201, 004 (2022), arXiv:2109.02766 ​[hep-th]
  42. M. Buican, A. Dymarsky & R. Radhakrishnan, “Quantum codes, CFTs, and defects”, JHEP 2303, 017 (2023), arXiv:2112.12162 ​[hep-th]
  43. K. Kawabata & S. Yahagi, “Elliptic genera from classical error-correcting codes”, arXiv:2308.12592 ​[hep-th]
  44. K. Kawabata, T. Nishioka & T. Okuda, “Narain CFTs from quantum codes and their ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauging”, arXiv:2308.01579 ​[hep-th]
  45. K. Kawabata, T. Nishioka & T. Okuda, “Supersymmetric conformal field theories from quantum stabilizer codes”, arXiv:2307.14602 ​[hep-th]
  46. Y. F. Alam, K. Kawabata, T. Nishioka, T. Okuda & S. Yahagi, “Narain CFTs from nonbinary stabilizer codes”, arXiv:2307.10581 ​[hep-th]
  47. Y. Furuta, “On the Rationality and the Code Structure of a Narain CFT, and the Simple Current Orbifold”, arXiv:2307.04190 ​[hep-th]
  48. K. Kawabata & S. Yahagi, “Fermionic CFTs from classical codes over finite fields”, JHEP 2305, 096 (2023), arXiv:2303.11613 ​[hep-th]
  49. A. Dymarsky & A. Shapere, “Quantum stabilizer codes, lattices, and CFTs”, JHEP 2021, 160 (2020), arXiv:2009.01244 ​[hep-th]
  50. T. Kibe, A. Mukhopadhyay & P. Padmanabhan, “A stabilizer code model with non-invertible symmetries: Strange fractons, confinement, and non-commutative and non-Abelian fusion rules”, arXiv:2309.10037 ​[hep-th]
  51. V. Ostrik, “Module categories, weak Hopf algebras and modular invariants”, math/0111139 ​[math.QA]
  52. J. Fuchs, I. Runkel & C. Schweigert, “TFT construction of RCFT correlators 1. Partition functions”, Nucl. Phys. B 646, 353 (2002), hep-th/0204148
  53. A. Davydov, “Unphysical diagonal modular invariants”, arXiv:1412.8505 ​[math.QA]
  54. Y. Kawahigashi, “A Remark on Gapped Domain Walls Between Topological Phases”, Letters in Mathematical Physics 105, 893 (2015)
  55. M. Buican, L. Li & R. Radhakrishnan, “a×b=cnormal-anormal-bnormal-ca\times b=citalic_a × italic_b = italic_c in 2+1212+12 + 1D TQFT”, Quantum 5, 468 (2021), arXiv:2012.14689 ​[hep-th]
  56. A. Davydov, “Bogomolov multiplier, double class-preserving automorphisms, and modular invariants for orbifolds”, Journal of Mathematical Physics 55, A. Davydov (2014)
  57. I. Cong, M. Cheng & Z. Wang, “Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter”, Communications in Mathematical Physics 355, 645 (2017)
  58. M. Barkeshli, P. Bonderson, M. Cheng & Z. Wang, “Symmetry fractionalization, defects, and gauging of topological phases”, Physical Review B 100, 115147 (2019)
  59. G. W. Moore & N. Seiberg, “Naturality in Conformal Field Theory”, Nucl. Phys. B 313, 16 (1989)
  60. R. Dijkgraaf & E. P. Verlinde, “Modular Invariance and the Fusion Algebra”, Nucl. Phys. B Proc. Suppl. 5, 87
  61. A. Davydov & T. Booker, “Commutative Algebras in Fibonacci Categories”, arXiv:1103.3537 ​[math.CT]
  62. T. Neupert, H. He, C. von Keyserlingk, G. Sierra & B. A. Bernevig, “Boson condensation in topologically ordered quantum liquids”, Physical Review B 93, B. A. Bernevig (2016)
  63. T. Neupert, H. He, C. Von Keyserlingk, G. Sierra & B. A. Bernevig, “No-go theorem for boson condensation in topologically ordered quantum liquids”, New Journal of Physics 18, 123009 (2016)
  64. J. Fuchs, I. Runkel & C. Schweigert, “TFT construction of RCFT correlators III:Simple currents”, Nuclear Physics B 694, 277 (2004)
  65. Z. Komargodski, K. Ohmori, K. Roumpedakis & S. Seifnashri, “Symmetries and strings of adjoint QCD22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT”, JHEP 2103, 103 (2021), arXiv:2008.07567 ​[hep-th]
  66. E. Rowell, R. Stong & Z. Wang, “On classification of modular tensor categories”, arXiv:0712.1377 ​[math.QA]
  67. V. Ostrik, “Module categories over the Drinfeld double of a finite group”, math/0202130 ​[math.QA]
  68. L. Kong & I. Runkel, “Morita classes of algebras in modular tensor categories”, Advances in Mathematics 219, 1548 (2008)
  69. S. F. Sawin, “Invariants of spin three manifolds from Chern-Simons theory and finite dimensional Hopf algebras”, math/9910106
  70. A. Davydov & D. Nikshych, “The Picard crossed module of a braided tensor category”, arXiv:1202.0061 ​[math.QA]
  71. S.-H. Ng, E. C. Rowell & X.-G. Wen, “Classification of modular data up to rank 11”, arXiv preprint arXiv:2308.09670 219, X. (2023)
  72. R. Geiko & G. W. Moore, “When Does A Three-Dimensional Chern-Simons-Witten Theory Have A Time Reversal Symmetry?”, arXiv:2209.04519 ​[hep-th]
  73. J. Kaidi, Z. Komargodski, K. Ohmori, S. Seifnashri & S.-H. Shao, “Higher central charges and topological boundaries in 2+1-dimensional TQFTs”, SciPost Phys. 13, 067 (2022), arXiv:2107.13091 ​[hep-th]
  74. T. Lan, J. C. Wang & X.-G. Wen, “Gapped Domain Walls, Gapped Boundaries and Topological Degeneracy”, Phys. Rev. Lett. 114, 076402 (2015), arXiv:1408.6514 ​[cond-mat.str-el]
  75. D. Naidu, “Categorical Morita equivalence for group-theoretical categories”, math/0605530 ​[math.QA]
  76. D. S. Freed & C. Teleman, “Relative quantum field theory”, Commun. Math. Phys. 326, 459 (2014), arXiv:1212.1692 ​[hep-th]
  77. D. S. Freed, G. W. Moore & C. Teleman, “Topological symmetry in quantum field theory”, arXiv:2209.07471 ​[hep-th]
  78. M. Cheng & D. J. Williamson, “Relative anomaly in (1+1)⁢d11normal-d(1+1)d( 1 + 1 ) italic_d rational conformal field theory”, Physical Review Research 2, D. J. Williamson (2020)
  79. Y. Choi, B. C. Rayhaun, Y. Sanghavi & S.-H. Shao, “Comments on Boundaries, Anomalies, and Non-Invertible Symmetries”, arXiv:2305.09713 ​[hep-th]
  80. L. Bhardwaj & S. Schafer-Nameki, “Generalized Charges, Part I: Invertible Symmetries and Higher Representations”, arXiv:2304.02660 ​[hep-th]
  81. T. Bartsch, M. Bullimore & A. Grigoletto, “Higher representations for extended operators”, arXiv:2304.03789 ​[hep-th]
  82. L. Bhardwaj & S. Schafer-Nameki, “Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT”, arXiv:2305.17159 ​[hep-th]
  83. T. Bartsch, M. Bullimore & A. Grigoletto, “Representation theory for categorical symmetries”, arXiv:2305.17165 ​[hep-th]
Citations (3)

Summary

We haven't generated a summary for this paper yet.