Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grad DFT: a software library for machine learning enhanced density functional theory (2309.15127v2)

Published 23 Sep 2023 in physics.chem-ph, cond-mat.mtrl-sci, cs.LG, and quant-ph

Abstract: Density functional theory (DFT) stands as a cornerstone method in computational quantum chemistry and materials science due to its remarkable versatility and scalability. Yet, it suffers from limitations in accuracy, particularly when dealing with strongly correlated systems. To address these shortcomings, recent work has begun to explore how machine learning can expand the capabilities of DFT; an endeavor with many open questions and technical challenges. In this work, we present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals. Grad DFT employs a pioneering parametrization of exchange-correlation functionals constructed using a weighted sum of energy densities, where the weights are determined using neural networks. Moreover, Grad DFT encompasses a comprehensive suite of auxiliary functions, notably featuring a just-in-time compilable and fully differentiable self-consistent iterative procedure. To support training and benchmarking efforts, we additionally compile a curated dataset of experimental dissociation energies of dimers, half of which contain transition metal atoms characterized by strong electronic correlations. The software library is tested against experimental results to study the generalization capabilities of a neural functional across potential energy surfaces and atomic species, as well as the effect of training data noise on the resulting model accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical Review 136, B864 (1964).
  2. J. Kohanoff, Electronic structure calculations for solids and molecules: theory and computational methods (Cambridge University Press, 2006).
  3. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Insights into current limitations of density functional theory, Science 321, 792 (2008).
  4. A. J. Cohen, P. Mori-Sánchez, and W. Yang, Challenges for density functional theory, Chemical Reviews 112, 289 (2012).
  5. N. Mardirossian and M. Head-Gordon, Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals, Molecular Physics 115, 2315 (2017).
  6. A. Jain, Y. Shin, and K. A. Persson, Computational predictions of energy materials using density functional theory, Nature Reviews Materials 1, 1 (2016).
  7. R. Peverati and D. G. Truhlar, Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20120476 (2014).
  8. R. Nagai, R. Akashi, and O. Sugino, Completing density functional theory by machine learning hidden messages from molecules, npj Computational Materials 6, 1 (2020).
  9. R. Nagai, R. Akashi, and O. Sugino, Machine-learning-based exchange correlation functional with physical asymptotic constraints, Physical Review Research 4, 013106 (2022).
  10. R. Pederson, B. Kalita, and K. Burke, Machine learning and density functional theory, Nature Reviews Physics 4, 357 (2022).
  11. P. L. Bartlett, A. Montanari, and A. Rakhlin, Deep learning: a statistical viewpoint, Acta Numerica 30, 87 (2021).
  12. M. Belkin, Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation, Acta Numerica 30, 203 (2021).
  13. N. Schuch and F. Verstraete, Computational complexity of interacting electrons and fundamental limitations of density functional theory, Nature Physics 5, 732 (2009).
  14. S. Dick and M. Fernandez-Serra, Machine learning accurate exchange and correlation functionals of the electronic density, Nature Communications 11, 3509 (2020).
  15. M. F. Kasim and S. M. Vinko, Learning the exchange-correlation functional from nature with fully differentiable density functional theory, Physical Review Letters 127, 126403 (2021).
  16. A. D. Kaplan, M. Levy, and J. P. Perdew, The predictive power of exact constraints and appropriate norms in density functional theory, Annual Review of Physical Chemistry 74, 193 (2023).
  17. X. Zhang and G. K.-L. Chan, Differentiable quantum chemistry with pyscf for molecules and materials at the mean-field level and beyond, The Journal of Chemical Physics 157, 204801 (2022).
  18. M. A. Marques, M. J. Oliveira, and T. Burnus, Libxc: A library of exchange and correlation functionals for density functional theory, Computer Physics Communications 183, 2272 (2012).
  19. K. Zheng and M. Lin, Jax-xc: Exchange correlation functionals library in jax, in Workshop on”Machine Learning for Materials”ICLR 2023 (2023).
  20. M. M. Denner, M. H. Fischer, and T. Neupert, Efficient learning of a one-dimensional density functional theory, Physical Review Research 2, 033388 (2020).
  21. C. A. Custódio, É. R. Filletti, and V. V. França, Artificial neural networks for density-functional optimizations in fermionic systems, Scientific Reports 9, 1886 (2019).
  22. J. Schmidt, C. L. Benavides-Riveros, and M. A. Marques, Machine learning the physical nonlocal exchange-correlation functional of density-functional theory, The Journal of Physical Chemistry Letters 10, 6425 (2019).
  23. K. Ryczko, D. A. Strubbe, and I. Tamblyn, Deep learning and density-functional theory, Physical Review A 100, 022512 (2019).
  24. R. Meyer, M. Weichselbaum, and A. W. Hauser, Machine learning approaches toward orbital-free density functional theory: Simultaneous training on the kinetic energy density functional and its functional derivative, Journal of Chemical Theory and Computation 16, 5685 (2020).
  25. P. Golub and S. Manzhos, Kinetic energy densities based on the fourth order gradient expansion: performance in different classes of materials and improvement via machine learning, Physical Chemistry Chemical Physics 21, 378 (2019).
  26. M. Alghadeer, A. Al-Aswad, and F. H. Alharbi, Highly accurate machine learning model for kinetic energy density functional, Physics Letters A 414, 127621 (2021).
  27. S. A. Ghasemi and T. D. Kühne, Artificial neural networks for the kinetic energy functional of non-interacting fermions, The Journal of Chemical Physics 154, 074107 (2021).
  28. A. Ryabov, I. Akhatov, and P. Zhilyaev, Application of two-component neural network for exchange-correlation functional interpolation, Scientific Reports 12, 14133 (2022).
  29. X. Lei and A. J. Medford, Design and analysis of machine learning exchange-correlation functionals via rotationally invariant convolutional descriptors, Physical Review Materials 3, 063801 (2019).
  30. S. Dick and M. Fernandez-Serra, Highly accurate and constrained density functional obtained with differentiable programming, Physical Review B 104, L161109 (2021).
  31. K. Bystrom and B. Kozinsky, Cider: An expressive, nonlocal feature set for machine learning density functionals with exact constraints, Journal of Chemical Theory and Computation 18, 2180 (2022).
  32. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140, A1133 (1965).
  33. R. M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, 2020).
  34. D. M. Ceperley and B. J. Alder, Ground state of the electron gas by a stochastic method, Physical Review Letters 45, 566 (1980).
  35. S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58, 1200 (1980).
  36. J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45, 13244 (1992).
  37. C. A. Ullrich, Time-dependent density-functional theory: concepts and applications (OUP Oxford, 2011).
  38. S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, The Journal of Chemical Physics 124 (2006a).
  39. C. Kalai, B. Mussard, and J. Toulouse, Range-separated double-hybrid density-functional theory with coupled-cluster and random-phase approximations, The Journal of Chemical Physics 151 (2019).
  40. L. Goerigk and S. Grimme, Double-hybrid density functionals, Wiley Interdisciplinary Reviews: Computational Molecular Science 4, 576 (2014).
  41. S. Grimme, Accurate description of van der waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry 25, 1463 (2004).
  42. S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction, Journal of Computational Chemistry 27, 1787 (2006b).
  43. S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, Journal of Computational Chemistry 32, 1456 (2011).
  44. O. A. Vydrov and T. Van Voorhis, Nonlocal van der waals density functional: The simpler the better, The Journal of Chemical Physics 133, 244103 (2010).
  45. The HDF Group, Hierarchical Data Format, version 5 (1997-NNNN), https://www.hdfgroup.org/HDF5/.
  46. P. Pulay, Convergence acceleration of iterative sequences. the case of scf iteration, Chemical Physics Letters 73, 393 (1980).
  47. P. Pulay, Improved scf convergence acceleration, Journal of Computational Chemistry 3, 556 (1982).
  48. J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, Physical Review Letters 115, 036402 (2015).
  49. J. Rumble et al., CRC handbook of chemistry and physics (CRC Press llc Boca Raton, FL, 2023).
  50. K. A. Moltved and K. P. Kepp, Chemical bond energies of 3d transition metals studied by density functional theory, Journal of Chemical Theory and Computation 14, 3479 (2018).
  51. K. P. Jensen, B. O. Roos, and U. Ryde, Performance of density functionals for first row transition metal systems, The Journal of Chemical Physics 126, 014103 (2007).
  52. J. F. Harrison, Electronic structure of diatomic molecules composed of a first-row transition metal and main-group element (H-F), Chemical Reviews 100, 679 (2000).
  53. V. Singh, Spectroscopic studies of diatomic gallium halides, Journal of Physical and Chemical Reference Data 34, 23 (2005).
  54. M. Lesiuk and B. Jeziorski, Complete basis set extrapolation of electronic correlation energies using the riemann zeta function, Journal of Chemical Theory and Computation 15, 5398 (2019).
  55. T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics 90, 1007 (1989).
  56. D. E. Woon and T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, The Journal of Chemical Physics 98, 1358 (1993).
  57. N. B. Balabanov and K. A. Peterson, Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3 d elements Sc–Zn, The Journal of Chemical Physics 123, 064107 (2005).
  58. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Physical Chemistry Chemical Physics 7, 3297 (2005).
  59. P. Mori-Sánchez, A. J. Cohen, and W. Yang, Discontinuous nature of the exchange-correlation functional in strongly correlated systems, Physical Review Letters 102, 066403 (2009).
  60. Q. Sun, Libcint: An efficient general integral library for gaussian basis functions, Journal of Computational Chemistry 36, 1664 (2015).
Citations (6)

Summary

We haven't generated a summary for this paper yet.