Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can-SAVE: Mass Cancer Risk Prediction via Survival Analysis Variables and EHR (2309.15039v2)

Published 26 Sep 2023 in cs.LG, cs.AI, and stat.AP

Abstract: Specific medical cancer screening methods are often costly, time-consuming, and weakly applicable on a large scale. Advanced AI methods greatly help cancer detection but require specific or deep medical data. These aspects prevent the mass implementation of cancer screening methods. For this reason, it is a disruptive change for healthcare to apply AI methods for mass personalized assessment of the cancer risk among patients based on the existing Electronic Health Records (EHR) volume. This paper presents a novel Can-SAVE cancer risk assessment method combining a survival analysis approach with a gradient-boosting algorithm. It is highly accessible and resource-efficient, utilizing only a sequence of high-level medical events. We tested the proposed method in a long-term retrospective experiment covering more than 1.1 million people and four regions of Russia. The Can-SAVE method significantly exceeds the baselines by the Average Precision metric of 22.8%$\pm$2.7% vs 15.1%$\pm$2.6%. The extensive ablation study also confirmed the proposed method's dominant performance. The experiment supervised by oncologists shows a reliable cancer patient detection rate of up to 84 out of 1000 selected. Such results surpass the medical screening strategies estimates; the typical age-specific Number Needed to Screen is only 9 out of 1000 (for colorectal cancer). Overall, our experiments show a 4.7-6.4 times improvement in cancer detection rate (TOP@1k) compared to the traditional healthcare risk estimation approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.