Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Passive Variable Impedance Control Strategy with Viscoelastic Parameters Estimation of Soft Tissues for Safe Ultrasonography (2309.14893v2)

Published 26 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: In the context of telehealth, robotic approaches have proven a valuable solution to in-person visits in remote areas, with decreased costs for patients and infection risks. In particular, in ultrasonography, robots have the potential to reproduce the skills required to acquire high-quality images while reducing the sonographer's physical efforts. In this paper, we address the control of the interaction of the probe with the patient's body, a critical aspect of ensuring safe and effective ultrasonography. We introduce a novel approach based on variable impedance control, allowing real-time optimisation of a compliant controller parameters during ultrasound procedures. This optimisation is formulated as a quadratic programming problem and incorporates physical constraints derived from viscoelastic parameter estimations. Safety and passivity constraints, including an energy tank, are also integrated to minimise potential risks during human-robot interaction. The proposed method's efficacy is demonstrated through experiments on a patient dummy torso, highlighting its potential for achieving safe behaviour and accurate force control during ultrasound procedures, even in cases of contact loss.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. European Reference Networks and Digital Health, “Market study on telemedicine,” European Commission, Tech. Rep., 2018. [Online]. Available: http://europa.eu
  2. Digital Health and Innovation, “Consolidated telemedicine implementation guide,” World Health Organization, Tech. Rep., 2022. [Online]. Available: https://www.who.int/publications/i/item/9789240059184
  3. S. Avgousti, E. G. Christoforou, A. S. Panayides, S. Voskarides, C. Novales, L. Nouaille, C. S. Pattichis, and P. Vieyres, “Medical telerobotic systems: current status and future trends,” BioMedical Engineering OnLine 2016 15:1, vol. 15, no. 1, pp. 1–44, 8 2016. [Online]. Available: https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-016-0217-7
  4. C. T. Coffin, “Work-related musculoskeletal disorders in sonographers: A review of causes and types of injury and best practices for reducing injury risk,” Reports in Medical Imaging, vol. 7, no. 1, pp. 15–26, 2014. [Online]. Available: http://dx.doi.org/10.2147/RMI.S34724
  5. K. Li, Y. Xu, and M. Q. Meng, “An Overview of Systems and Techniques for Autonomous Robotic Ultrasound Acquisitions,” IEEE Transactions on Medical Robotics and Bionics, vol. 3, no. 2, pp. 510–524, 5 2021.
  6. X. Ma, W. Y. Kuo, K. Yang, A. Rahaman, and H. K. Zhang, “A-SEE: Active-Sensing End-Effector Enabled Probe Self-Normal-Positioning for Robotic Ultrasound Imaging Applications,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12 475–12 482, 10 2022.
  7. J. Tan, Y. Li, B. Li, Y. Leng, J. Peng, J. Wu, B. Luo, X. Chen, Y. Rong, and C. Fu, “Automatic Generation of Autonomous Ultrasound Scanning Trajectory Based on 3-D Point Cloud,” IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 4, pp. 976–990, 11 2022.
  8. C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, and N. Navab, “Towards MRI-Based Autonomous Robotic US Acquisitions: A First Feasibility Study,” IEEE Transactions on Medical Imaging, vol. 36, no. 2, pp. 538–548, 2 2017.
  9. J. Zhan, J. Cartucho, and S. Giannarou, “Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation,” Proceedings - IEEE International Conference on Robotics and Automation, pp. 11 147–11 154, 5 2020.
  10. M. C. Roshan, A. Pranata, and M. Isaksson, “Robotic Ultrasonography for Autonomous Non-Invasive Diagnosis - A Systematic Literature Review,” IEEE Transactions on Medical Robotics and Bionics, vol. 4, no. 4, pp. 863–874, 11 2022.
  11. F. von Haxthausen, S. Böttger, D. Wulff, J. Hagenah, V. García-Vázquez, and S. Ipsen, “Medical Robotics for Ultrasound Imaging: Current Systems and Future Trends,” Current Robotics Reports 2021 2:1, vol. 2, no. 1, pp. 55–71, 2 2021. [Online]. Available: https://link.springer.com/article/10.1007/s43154-020-00037-y
  12. Z. Jiang, S. E. Salcudean, and N. Navab, “Robotic ultrasound imaging: State-of-the-art and future perspectives,” Medical Image Analysis, vol. 89, p. 102878, 10 2023. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S136184152300138X
  13. S. Merouche, L. Allard, E. Montagnon, G. Soulez, P. Bigras, and G. Cloutier, “A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 1, pp. 35–46, 1 2016.
  14. R. Tsumura and H. Iwata, “Robotic fetal ultrasonography platform with a passive scan mechanism,” International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 8, pp. 1323–1333, 8 2020. [Online]. Available: https://link.springer.com/article/10.1007/s11548-020-02130-1
  15. S. Virga, O. Zettinig, M. Esposito, K. Pfister, B. Frisch, T. Neff, N. Navab, and C. Hennersperger, “Automatic force-compliant robotic Ultrasound screening of abdominal aortic aneurysms,” IEEE International Conference on Intelligent Robots and Systems, vol. 2016-November, pp. 508–513, 11 2016.
  16. A. Pappalardo, A. Albakri, C. Liu, L. Bascetta, E. De Momi, and P. Poignet, “Hunt–Crossley model based force control for minimally invasive robotic surgery,” Biomedical Signal Processing and Control, vol. 29, pp. 31–43, 8 2016.
  17. M. Ferro, C. Gaz, M. Anzidei, and M. Vendittelli, “Online Needle-Tissue Interaction Model Identification for Force Feedback Enhancement in Robot-Assisted Interventional Procedures,” IEEE Transactions on Medical Robotics and Bionics, vol. 3, no. 4, pp. 936–947, 11 2021.
  18. Z. Jiang, M. Grimm, M. Zhou, Y. Hu, J. Esteban, and N. Navab, “Automatic Force-Based Probe Positioning for Precise Robotic Ultrasound Acquisition,” IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 11 200–11 211, 11 2021.
  19. J. Wang, C. Lu, Y. Lv, S. Yang, M. Zhang, and Y. Shen, “Task Space Compliant Control and Six-Dimensional Force Regulation Toward Automated Robotic Ultrasound Imaging,” IEEE Transactions on Automation Science and Engineering, 2023.
  20. A. Duan, M. Victorova, J. Zhao, Y. Sun, Y. Zheng, and D. Navarro-Alarcon, “Ultrasound-Guided Assistive Robots for Scoliosis Assessment With Optimization-Based Control and Variable Impedance,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8106–8113, 7 2022.
  21. K. H. Hunt and F. R. Crossley, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” Journal of Applied Mechanics, vol. 42, no. 2, pp. 440–445, 6 1975. [Online]. Available: https://dx.doi.org/10.1115/1.3423596
  22. N. Özkaya, M. Nordin, D. Goldsheyder, and D. Leger, “Fundamentals of biomechanics: Equilibrium, motion, and deformation: Third edition,” Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation: Third Edition, pp. 1–275, 1 2012.
  23. N. Diolaiti, C. Melchiorri, and S. Stramigioli, “Contact impedance estimation for robotic systems,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 925–935, 10 2005.
  24. J. D’Errico, “Surface fitting using gridfit,” MATLAB central file exchange, vol. 643, 2005.
  25. P. Chalasani, L. Wang, R. Roy, N. Simaan, R. H. Taylor, and M. Kobilarov, “Concurrent nonparametric estimation of organ geometry and tissue stiffness using continuous adaptive palpation,” in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2016-June, 2016.
  26. F. Ferraguti, N. Preda, A. Manurung, M. Bonfe, O. Lambercy, R. Gassert, R. Muradore, P. Fiorini, and C. Secchi, “An Energy Tank-Based Interactive Control Architecture for Autonomous and Teleoperated Robotic Surgery,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1073–1088, 10 2015.
  27. J. Zhao, A. Giammarino, E. Lamon, J. Gandarias, E. Momi, and A. Ajoudani, “A Hybrid Learning and Optimization Framework to Achieve Physically Interactive Tasks With Mobile Manipulators,” IEEE Robotics and Automation Letters, vol. 7, no. 3, 2022.
  28. S. Scherzinger, A. Roennau, and R. Dillmann, “Forward Dynamics Compliance Control (FDCC): A new approach to cartesian compliance for robotic manipulators,” IEEE International Conference on Intelligent Robots and Systems, vol. 2017-September, pp. 4568–4575, 12 2017.
  29. L. Beber, E. Lamon, L. Palopoli, L. Fambri, M. Saveriano, and D. Fontanelli, “Elasticity measurements of expanded foams using a collaborative robotic arm,” in 2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2024, pp. 1–6.
  30. H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES: A parametric active-set algorithm for quadratic programming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.
  31. A. Haddadi and K. Hashtrudi-Zaad, “Real-time identification of hunt-crossley dynamic models of contact environments,” IEEE Transactions on Robotics, vol. 28, no. 3, pp. 555–566, 2012.
Citations (4)

Summary

We haven't generated a summary for this paper yet.