2000 character limit reached
Universally Robust Quantum Control (2309.14437v2)
Published 25 Sep 2023 in quant-ph
Abstract: We study the robustness of the evolution of a quantum system against small uncontrolled variations in parameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative error to leading order, can be expressed in superoperator form and use this to derive control pulses which are robust to any class of systematic unknown errors. The proposed optimal control protocol is equivalent to searching for a sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e. it constitutes a 1-design. We highlight the power of our results for error resistant single- and two-qubit gates.
- C. P. Koch et al., EPJ Quantum Technology 9, 19 (2022).
- I. H. Deutsch, PRX Quantum 1, 020101 (2020).
- J. Preskill, Quantum 2, 79 (2018).
- A. Kiely and A. Ruschhaupt, J. Phys. B 47, 115501 (2014).
- D. A. Lidar, “Review of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling,” in Quantum Information and Computation for Chemistry (John Wiley & Sons, Ltd, 2014) pp. 295–354.
- See Supplemental Material.
- P. Giorda and P. Zanardi, Phys. Rev. E 81, 017203 (2010).
- If this were not the case we can always write V=V′−(TrV′/d)𝕀𝑉superscript𝑉′Trsuperscript𝑉′𝑑𝕀V=V^{\prime}-(\mbox{Tr}{V^{\prime}}/d)\mathbb{I}italic_V = italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - ( Tr italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_d ) blackboard_I, where TrV=0Tr𝑉0\mbox{Tr}{V}=0Tr italic_V = 0. The term proportional to identity will not contribute to the dynamics besides an overall global phase which will not be relevant for control.
- W. G. Brown and L. Viola, Phys. Rev. Lett. 104, 250501 (2010).
- D. A. Roberts and B. Yoshida, J. High Energy Phys 2017, 1 (2017).
- B. Collins and P. Śniady, Commun. Math. Phys. 264, 773 (2006).
- P. Zanardi, Phys. Lett. A 258, 77 (1999).
- K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009a).
- J. J. Wallman and J. Emerson, Phys. Rev. A 94, 052325 (2016).
- The choice of piecewise ansatz is for convenience. Other function bases could equally be used with this method e.g. a Fourier basis, see Sup for numerical results using different parametrizations.
- A. Boozer, Phys. Rev. A 85, 012317 (2012).
- P. M. Poggi, Phys. Rev. A 99, 042116 (2019).
- This two-stage approach can be further refined to improve performance, see for instance Ref. Kosut et al. (2022).
- K. Khodjasteh and L. Viola, Phys. Rev. A 80, 032314 (2009b).
- A. Kiely, EPL 134, 10001 (2021).