Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Universally Robust Quantum Control (2309.14437v2)

Published 25 Sep 2023 in quant-ph

Abstract: We study the robustness of the evolution of a quantum system against small uncontrolled variations in parameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative error to leading order, can be expressed in superoperator form and use this to derive control pulses which are robust to any class of systematic unknown errors. The proposed optimal control protocol is equivalent to searching for a sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e. it constitutes a 1-design. We highlight the power of our results for error resistant single- and two-qubit gates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. C. P. Koch et al., EPJ Quantum Technology 9, 19 (2022).
  2. I. H. Deutsch, PRX Quantum 1, 020101 (2020).
  3. J. Preskill, Quantum 2, 79 (2018).
  4. A. Kiely and A. Ruschhaupt, J. Phys. B 47, 115501 (2014).
  5. D. A. Lidar, “Review of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling,” in Quantum Information and Computation for Chemistry (John Wiley & Sons, Ltd, 2014) pp. 295–354.
  6. See Supplemental Material.
  7. P. Giorda and P. Zanardi, Phys. Rev. E 81, 017203 (2010).
  8. If this were not the case we can always write V=V′−(Tr⁢V′/d)⁢𝕀𝑉superscript𝑉′Trsuperscript𝑉′𝑑𝕀V=V^{\prime}-(\mbox{Tr}{V^{\prime}}/d)\mathbb{I}italic_V = italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - ( Tr italic_V start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_d ) blackboard_I, where Tr⁢V=0Tr𝑉0\mbox{Tr}{V}=0Tr italic_V = 0. The term proportional to identity will not contribute to the dynamics besides an overall global phase which will not be relevant for control.
  9. W. G. Brown and L. Viola, Phys. Rev. Lett. 104, 250501 (2010).
  10. D. A. Roberts and B. Yoshida, J. High Energy Phys 2017, 1 (2017).
  11. B. Collins and P. Śniady, Commun. Math. Phys. 264, 773 (2006).
  12. P. Zanardi, Phys. Lett. A 258, 77 (1999).
  13. K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009a).
  14. J. J. Wallman and J. Emerson, Phys. Rev. A 94, 052325 (2016).
  15. The choice of piecewise ansatz is for convenience. Other function bases could equally be used with this method e.g. a Fourier basis, see Sup for numerical results using different parametrizations.
  16. A. Boozer, Phys. Rev. A 85, 012317 (2012).
  17. P. M. Poggi, Phys. Rev. A 99, 042116 (2019).
  18. This two-stage approach can be further refined to improve performance, see for instance Ref. Kosut et al. (2022).
  19. K. Khodjasteh and L. Viola, Phys. Rev. A 80, 032314 (2009b).
  20. A. Kiely, EPL 134, 10001 (2021).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com