A selection of PID type controller settings via LQR approach for two-wheeled balancing robot (2309.14086v1)
Abstract: The problem of PID type controller tuning has been addressed in this paper. In particular, a method of selection of PD settings based on the solution of linear-quadratic optimisation problem using the energy criterion has been investigated. Thus, the possibility of transforming optimal settings of the linear-quadratic regulator into the settings of the controller in the classical control system has been given. The presented methodology has been used during synthesis of control system for a two-wheeled balancing robot. Finally, the performance of the proposed control system has been validated by simulation in Matlab-Simulink environment with the use of a two-wheeled balancing robot model.
- K. Furuta, M. Yamakita, and S. Kobayashi, “Swing up control of inverted pendulum,” in Proceedings of the International Conference on Industrial Electronics, Control and Instrumentation (IECON), 1991, pp. 2193–2198.
- S. Jadlovská and J. Sarnovský, “Classical double inverted pendulum – a complex overview of a system,” in Proceedings of the IEEE 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics, 2012, pp. 103–108.
- K. Andrzejewski, M. Czyżniewski, M. Zielonka, R. Łangowski, and T. Zubowicz, “A comprehensive approach to double inverted pendulum modelling,” Archives of Control Sciences, vol. 29, no. 3, pp. 459–483, 2019.
- M. Waszak and R. Łangowski, “An automatic self–tuning control system design for an inverted pendulum,” IEEE Access, vol. 8, pp. 26 726–26 738, 2020.
- H. G. Nguyen, J. Morrell, K. D. Mullens, A. B. Burmeister, S. Miles, N. Farrington, K. M. Thomas, and D. W. Gage, “Segway robotic mobility platform,” in Proceedings of SPIE Mobile Robots XVII, 2004, pp. 207–220.
- F. Dai, X. Gao, S. Jiang, W. Guo, and Y. Liu, “A two–wheeled inverted pendulum robot with friction compensation,” Mechatronics, vol. 30, pp. 116–125, 2015.
- M. Velazquez, D. Cruz, S. Garcia, and M. Bandala, “Velocity and motion control of a self-balancing vehicle based on a cascade control strategy,” International Journal of Advanced Robotic Systems, vol. 13, pp. 1–11, 2016.
- M.-S. Park and D. Chwa, “Swing-up and stabilization control of inverted-pendulum systems via coupled sliding-mode control method,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 3541–3555, 2009.
- M. R. M. Romlay, M. I. Azhar, S. F. Toha, and M. M. Rashid, “Two-wheel balancing robot; review on control methods and experiments,” International Journal of Recent Technology and Engineering, vol. 7, pp. 106–112, 2019.
- J.-J. Wang, “Simulation studies of inverted pendulum based on PID controllers,” Simulation Modelling Practice and Theory, vol. 19, pp. 440–449, 2011.
- L. B. Prasad, B. Tyagi, and H. O. Gupta, “Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller and LQR,” in Proceedings of the IEEE International Conference on Control System, Computing and Engineering, 2011, pp. 540–545.
- C. Mahapatra and S. Chauhan, “Tracking control of inverted pendulum on a cart with disturbance using pole placement and LQR,” in Proceedings of the International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT), 2017, pp. 1–6.
- J.-B. He, Q.-G. Wang, and T.-H. Lee, “PI/PID controller tuning via LQR approach,” Chemical Engineering Science, vol. 55, pp. 2429–2439, 2000.
- M. Czyżniewski, R. Łangowski, and T. Zubowicz, “Metody strojenia regulatorów typu PID z wykorzystaniem technologii syntezy regulatorów od stanu (in Polish),” Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, vol. 68, pp. 9–12, 2019.
- K. Laddach and R. Łangowski, “Projekt systemu sterowania dwukołowym robotem balansującym (in Polish),” Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej, vol. 68, pp. 27–32, 2019.
- C. Bowden, W. Holderbaum, and V. Beccera, “Strong structural controllability and the multilink inverted pendulum,” IEEE Transactions on Automatic Control, vol. 57, pp. 2891–2896, 2012.
- M. Texteira and S. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, pp. 133–142, 1999.
Collections
Sign up for free to add this paper to one or more collections.