Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data (2309.13705v2)

Published 24 Sep 2023 in cs.LG and cs.AI

Abstract: Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent deep generative SR methods have shown promising results. However, these methods face difficulties in processing high-dimensional problems and learning constants due to the large search space, and they don't scale well to unseen problems. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore symbolic networks with various structures, guided by reinforcement learning, and optimize them to identify expressions that better-fitting the data. Based on extensive numerical experiments on low-dimensional public standard benchmarks and the well-known SRBench with more variables, DySymNet shows clear superiority over several representative baseline models. Open source code is available at https://github.com/AILWQ/DySymNet.

Citations (2)

Summary

We haven't generated a summary for this paper yet.