Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
122 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Learning-based Inverse Perception Contracts and Applications (2309.13515v2)

Published 24 Sep 2023 in cs.RO, cs.SY, and eess.SY

Abstract: Perception modules are integral in many modern autonomous systems, but their accuracy can be subject to the vagaries of the environment. In this paper, we propose a learning-based approach that can automatically characterize the error of a perception module from data and use this for safe control. The proposed approach constructs an inverse perception contract (IPC) which generates a set that contains the ground-truth value that is being estimated by the perception module, with high probability. We apply the proposed approach to study a vision pipeline deployed on a quadcopter. With the proposed approach, we successfully constructed an IPC for the vision pipeline. We then designed a control algorithm that utilizes the learned IPC, with the goal of landing the quadcopter safely on a landing pad. Experiments show that with the learned IPC, the control algorithm safely landed the quadcopter despite the error from the perception module, while the baseline algorithm without using the learned IPC failed to do so.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448.
  2. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.
  3. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
  4. S. Dean, A. Taylor, R. Cosner, B. Recht, and A. Ames, “Guaranteeing safety of learned perception modules via measurement-robust control barrier functions,” in Conference on Robot Learning.   PMLR, 2021, pp. 654–670.
  5. C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe, generalizable perception-based hybrid control with certificates,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1904–1911, 2022.
  6. C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra, “Verifying controllers with vision-based perception using safe approximate abstractions,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4205–4216, 2022.
  7. A. Astorga, C. Hsieh, P. Madhusudan, and S. Mitra, “Perception contracts for safety of ml-enabled systems,” Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, 2023.
  8. Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen, “Autonomous aerial navigation using monocular visual-inertial fusion,” Journal of Field Robotics, vol. 35, no. 1, pp. 23–51, 2018.
  9. G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation, control, and planning for aggressive flight with a small quadrotor with a single camera and imu,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, 2016.
  10. S. Tang, V. Wüest, and V. Kumar, “Aggressive flight with suspended payloads using vision-based control,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1152–1159, 2018.
  11. F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, “End-to-end driving via conditional imitation learning,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 4693–4700.
  12. F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real image,” in Proceedings of Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.
  13. S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for perception-based control,” in Learning for Dynamics and Control.   PMLR, 2020, pp. 350–360.
  14. G. Chou, N. Ozay, and D. Berenson, “Safe output feedback motion planning from images via learned perception modules and contraction theory,” in International Workshop on the Algorithmic Foundations of Robotics.   Springer, 2022, pp. 349–367.
  15. D. Sun and S. Mitra, “Neureach: Learning reachability functions from simulations,” in International Conference on Tools and Algorithms for the Construction and Analysis of Systems.   Springer, 2022, pp. 322–337.
  16. T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-Chanlatte, and S. A. Seshia, “Verifai: A toolkit for the design and analysis of artificial intelligence-based systems,” arXiv preprint arXiv:1902.04245, 2019.
  17. A. Devonport and M. Arcak, “Estimating reachable sets with scenario optimization,” in Learning for dynamics and control.   PMLR, 2020, pp. 75–84.
  18. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.
  19. G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
  20. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.