Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Data is often loadable in short depth: Quantum circuits from tensor networks for finance, images, fluids, and proteins (2309.13108v3)

Published 22 Sep 2023 in quant-ph, cs.LG, and physics.data-an

Abstract: Though there has been substantial progress in developing quantum algorithms to study classical datasets, the cost of simply \textit{loading} classical data is an obstacle to quantum advantage. When the amplitude encoding is used, loading an arbitrary classical vector requires up to exponential circuit depths with respect to the number of qubits. Here, we address this ``input problem'' with two contributions. First, we introduce a circuit compilation method based on tensor network (TN) theory. Our method -- AMLET (Automatic Multi-layer Loader Exploiting TNs) -- proceeds via careful construction of a specific TN topology and can be tailored to arbitrary circuit depths. Second, we perform numerical experiments on real-world classical data from four distinct areas: finance, images, fluid mechanics, and proteins. To the best of our knowledge, this is the broadest numerical analysis to date of loading classical data into a quantum computer. The required circuit depths are often several orders of magnitude lower than the exponentially-scaling general loading algorithm would require. Besides introducing a more efficient loading algorithm, this work demonstrates that many classical datasets are loadable in depths that are much shorter than previously expected, which has positive implications for speeding up classical workloads on quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Physical Review Letters 103, 150502 (2009).
  2. D. W. Berry, High-order quantum algorithm for solving linear differential equations, Journal of Physics A: Mathematical and Theoretical 47, 105301 (2014).
  3. A. M. Childs, J.-P. Liu, and A. Ostrander, High-precision quantum algorithms for partial differential equations, Quantum 5, 574 (2021).
  4. M. Schuld and N. Killoran, Quantum machine learning in feature Hilbert spaces, Physical Review Letters 122, 040504 (2019).
  5. Y. Zhang, K. Lu, and Y. Gao, QSobel: a novel quantum image edge extraction algorithm, Science China Information Sciences 58, 1 (2015).
  6. N. Jiang, J. Wang, and Y. Mu, Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio, Quantum Information Processing 14, 4001 (2015).
  7. S. Caraiman and V. I. Manta, Quantum image filtering in the frequency domain, Advances in Electrical and Computer Engineering 13, 77 (2013).
  8. S. Caraiman and V. I. Manta, Histogram-based segmentation of quantum images, Theoretical Computer Science 529, 46 (2014).
  9. K. Nakaji and N. Yamamoto, Quantum semi-supervised generative adversarial network for enhanced data classification, Scientific Reports 11, 1 (2021).
  10. S. Aaronson, Read the fine print, Nature Physics 11, 291 (2015).
  11. E. Tang, Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions, Phys. Rev. Lett. 127, 060503 (2021).
  12. M. Plesch and Č. Brukner, Quantum-state preparation with universal gate decompositions, Physical Review A 83, 032302 (2011).
  13. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum random access memory, Physical Review Letters 100, 160501 (2008).
  14. C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative adversarial networks for learning and loading random distributions, npj Quantum Information 5, 1 (2019).
  15. J. Bausch, Fast black-box quantum state preparation, Quantum 6, 773 (2022).
  16. R. LaRose and B. Coyle, Robust data encodings for quantum classifiers, Physical Review A 102, 032420 (2020).
  17. A. Holmes and A. Matsuura, Efficient quantum circuits for accurate state preparation of smooth, differentiable functions, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 169–179.
  18. G. Marin-Sanchez, J. Gonzalez-Conde, and M. Sanz, Quantum algorithms for approximate function loading, arXiv preprint arXiv:2111.07933  (2021).
  19. T. Shirakawa, H. Ueda, and S. Yunoki, Automatic quantum circuit encoding of a given arbitrary quantum state, arXiv preprint arXiv:2112.14524  (2021).
  20. X.-M. Zhang, M.-H. Yung, and X. Yuan, Low-depth quantum state preparation, Phys. Rev. Res. 3, 043200 (2021).
  21. D. Camps and R. Van Beeumen, FABLE: Fast approximate quantum circuits for block-encodings, arXiv preprint arXiv:2205.00081  (2022).
  22. S.-J. Ran, Encoding of matrix product states into quantum circuits of one-and two-qubit gates, Physical Review A 101, 032310 (2020).
  23. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of physics 349, 117 (2014).
  24. F. Vatan and C. Williams, Optimal quantum circuits for general two-qubit gates, Physical Review A 69, 032315 (2004).
  25. J. Gray, quimb: A python package for quantum information and many-body calculations, Journal of Open Source Software 3, 819 (2018).
  26. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Annals of physics 326, 96 (2011).
  27. S. Singh, R. N. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global U(1) symmetry, Physical Review B 83, 115125 (2011).
  28. P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Vol. 315 (Springer Science & Business Media, 2013).
  29. Intel image classification (Kaggle dataset) (2018), available at kaggle.com/datasets/puneet6060/intel-image-classification.
  30. F. Yan, A. M. Iliyasu, and S. E. Venegas-Andraca, A survey of quantum image representations, Quantum Information Processing 15, 1 (2016).
  31. W. Rodi, Turbulence modeling and simulation in hydraulics: A historical review, Journal of Hydraulic Engineering 143, 03117001 (2017).
  32. R. McConkey, E. Yee, and F.-S. Lien, A curated dataset for data-driven turbulence modelling, Scientific data 8, 1 (2021).
  33. Huge stock price data: Intraday minute bar (Kaggle dataset) (2020), available at kaggle.com/datasets/arashnic/stock-data-intraday-minute-bar.
  34. P. Śledź and A. Caflisch, Protein structure-based drug design: from docking to molecular dynamics, Current opinion in structural biology 48, 93 (2018).
  35. P. A. M. Casares, R. Campos, and M. A. Martin-Delgado, QFold: quantum walks and deep learning to solve protein folding, Quantum Science and Technology 7, 025013 (2022).
Citations (5)

Summary

We haven't generated a summary for this paper yet.