Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PEFTT: Parameter-Efficient Fine-Tuning for low-resource Tibetan pre-trained language models (2309.12109v1)

Published 21 Sep 2023 in cs.CL and cs.AI

Abstract: In this era of LLMs, the traditional training of models has become increasingly unimaginable for regular users and institutions. The exploration of efficient fine-tuning for high-resource languages on these models is an undeniable trend that is gradually gaining popularity. However, there has been very little exploration for various low-resource languages, such as Tibetan. Research in Tibetan NLP is inherently scarce and limited. While there is currently no existing LLM for Tibetan due to its low-resource nature, that day will undoubtedly arrive. Therefore, research on efficient fine-tuning for low-resource LLMs like Tibetan is highly necessary. Our research can serve as a reference to fill this crucial gap. Efficient fine-tuning strategies for pre-trained LLMs (PLMs) in Tibetan have seen minimal exploration. We conducted three types of efficient fine-tuning experiments on the publicly available TNCC-title dataset: "prompt-tuning," "Adapter lightweight fine-tuning," and "prompt-tuning + Adapter fine-tuning." The experimental results demonstrate significant improvements using these methods, providing valuable insights for advancing Tibetan language applications in the context of pre-trained models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. doi:10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423
  2. arXiv:1910.10683[cs,stat], doi:10.48550/arXiv.1910.10683. URL http://arxiv.org/abs/1910.10683
  3. arXiv:1902.00751[cs,stat]. URL http://arxiv.org/abs/1902.00751
  4. doi:10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353
  5. arXiv:2205.05638[cs], doi:10.48550/arXiv.2205.05638. URL http://arxiv.org/abs/2205.05638
  6. arXiv:2109.14076[cs], doi:10.48550/arXiv.2109.14076. URL http://arxiv.org/abs/2109.14076
  7. doi:10.18653/v1/2020.emnlp-main.617. URL https://www.aclweb.org/anthology/2020.emnlp-main.617
  8. doi:10.18653/v1/2020.coling-main.488. URL https://www.aclweb.org/anthology/2020.coling-main.488
  9. doi:10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.eacl-main.20
  10. doi:10.18653/v1/2020.emnlp-main.346. URL https://www.aclweb.org/anthology/2020.emnlp-main.346
  11. doi:10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295
  12. arXiv:2102.12206[cs], doi:10.48550/arXiv.2102.12206. URL http://arxiv.org/abs/2102.12206
  13. doi:10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243
  14. doi:10.18653/v1/2022.acl-long.346. URL https://aclanthology.org/2022.acl-long.346
  15. doi:10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8
  16. doi:10.1109/SMC53654.2022.9945074. URL https://ieeexplore.ieee.org/document/9945074/
  17. doi:10.1145/3548608.3559255. URL https://doi.org/10.1145/3548608.3559255
  18. doi:10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747
  19. doi:10.18653/v1/2022.acl-demo.10. URL https://aclanthology.org/2022.acl-demo.10
  20. W. L. Taylor, “cloze procedure”: A new tool for measuring readability 30 (4) 415–433. doi:10.1177/107769905303000401. URL http://journals.sagepub.com/doi/10.1177/107769905303000401
  21. doi:10.18653/v1/2021.acl-long.568. URL https://aclanthology.org/2021.acl-long.568
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhou Mingjun (1 paper)
  2. Daiqing Zhuoma (1 paper)
  3. Qun Nuo (1 paper)
  4. Nyima Tashi (7 papers)