Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Error-Identification and Correction using Block-Sparse Optimization (2309.11784v3)

Published 21 Sep 2023 in eess.SY, cs.SY, and eess.SP

Abstract: The conventional solutions for fault-detection, identification, and reconstruction (FDIR) require centralized decision-making mechanisms which are typically combinatorial in their nature, necessitating the design of an efficient distributed FDIR mechanism that is suitable for multi-agent applications. To this end, we develop a general framework for efficiently reconstructing a sparse vector being observed over a sensor network via nonlinear measurements. The proposed framework is used to design a distributed multi-agent FDIR algorithm based on a combination of the sequential convex programming (SCP) and the alternating direction method of multipliers (ADMM) optimization approaches. The proposed distributed FDIR algorithm can process a variety of inter-agent measurements (including distances, bearings, relative velocities, and subtended angles between agents) to identify the faulty agents and recover their true states. The effectiveness of the proposed distributed multi-agent FDIR approach is demonstrated by considering a numerical example in which the inter-agent distances are used to identify the faulty agents in a multi-agent configuration, as well as reconstruct their error vectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. E. Naderi and K. Khorasani, “A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems,” Automatica, vol. 85, pp. 165–178, 2017.
  2. M. Guo, D. V. Dimarogonas, and K. H. Johansson, “Distributed real-time fault detection and isolation for cooperative multi-agent systems,” in 2012 American Control Conference (ACC), pp. 5270–5275, IEEE, 2012.
  3. C. Gao, X. He, H. Dong, H. Liu, and G. Lyu, “A survey on fault-tolerant consensus control of multi-agent systems: trends, methodologies and prospects,” International Journal of Systems Science, vol. 53, no. 13, pp. 2800–2813, 2022.
  4. H. Kazumune, S. C. Michelle, and V. Dimos, “Distributed l1-state-and-fault estimation for multiagent systems,” IEEE Trans. Control Netw. Syst, vol. 7, no. 2, pp. 699–710, 2020.
  5. I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE transactions on control systems technology, vol. 18, no. 3, pp. 636–653, 2009.
  6. S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and P. Tabuada, “Secure state estimation against sensor attacks in the presence of noise,” IEEE Transactions on Control of Network Systems, vol. 4, no. 1, pp. 49–59, 2016.
  7. M. Chadli, M. Davoodi, and N. Meskin, “Distributed state estimation, fault detection and isolation filter design for heterogeneous multi-agent linear parameter-varying systems,” IET Control Theory & Applications, vol. 11, no. 2, pp. 254–262, 2017.
  8. Z. Gallehdari, N. Meskin, and K. Khorasani, “An h∞\infty∞ cooperative fault recovery control of multi-agent systems,” Automatica, vol. 84, pp. 101–108, 2017.
  9. Z.-H. Zhang and G.-H. Yang, “Distributed fault detection and isolation for multiagent systems: An interval observer approach,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 6, pp. 2220–2230, 2018.
  10. D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 2, pp. 319–333, 2021.
  11. S. Khan and I. Hwang, “Recovery of localization errors in sensor networks using inter-agent measurements,” arXiv preprint arXiv:2307.12078, 2023.
  12. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, 2015.
  13. R. K. Williams and G. S. Sukhatme, “Observability in topology-constrained multi-robot target tracking,” in 2015 IEEE international conference on robotics and automation (ICRA), pp. 1795–1801, IEEE, 2015.
  14. S. Zhao and D. Zelazo, “Bearing rigidity theory and its applications for control and estimation of network systems: Life beyond distance rigidity,” IEEE Control Systems Magazine, vol. 39, no. 2, pp. 66–83, 2019.
  15. G. Jing, G. Zhang, H. W. Joseph Lee, and L. Wang, “Weak rigidity theory and its application to formation stabilization,” SIAM Journal on Control and optimization, vol. 56, no. 3, pp. 2248–2273, 2018.
  16. C. Zillober, K. Schittkowski, and K. Moritzen, “Very large scale optimization by sequential convex programming,” Optimization Methods and Software, vol. 19, no. 1, pp. 103–120, 2004.
  17. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  18. Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty relations and efficient recovery,” IEEE Transactions on Signal Processing, vol. 58, p. 3042–3054, Jun 2010.
  19. Y. Gao, J. Peng, and S. Yue, “Stability and robustness of the l2subscript𝑙2l_{2}italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT/lqsubscript𝑙𝑞l_{q}italic_l start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT-minimization for block sparse recovery,” Signal Processing, vol. 137, pp. 287–297, 2017.
  20. R. Diestel, “Graph theory,” Graph Theory, pp. 1–34, 2017.
  21. J. Tiemann and C. Wietfeld, “Scalable and precise multi-UAV indoor navigation using TDOA-based UWB localization,” in 2017 international conference on indoor positioning and indoor navigation (IPIN), pp. 1–7, IEEE, 2017.
  22. R. Aragues, L. Carlone, G. Calafiore, and C. Sagues, “Multi-agent localization from noisy relative pose measurements,” in 2011 IEEE International Conference on Robotics and Automation, pp. 364–369, IEEE, 2011.
  23. J. M. Lee, Introduction to Smooth Manifolds. Springer, 2012.
  24. L. Asimow and B. Roth, “The rigidity of graphs,” Transactions of the American Mathematical Society, vol. 245, pp. 279–289, 1978.
  25. T.-S. Tay and W. Whiteley, “Generating isostatic frameworks,” Structural Topology 1985 Núm 11, 1985.
  26. B. D. Anderson, I. Shames, G. Mao, and B. Fidan, “Formal theory of noisy sensor network localization,” SIAM Journal on Discrete Mathematics, vol. 24, no. 2, pp. 684–698, 2010.
  27. B. Hendrickson, “Conditions for unique graph realizations,” SIAM Journal on Computing, vol. 21, no. 1, pp. 65–84, 1992.
  28. T. Eren, O. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Morse, B. D. Anderson, and P. N. Belhumeur, “Rigidity, computation, and randomization in network localization,” in IEEE INFOCOM 2004, vol. 4, pp. 2673–2684, IEEE, 2004.
  29. D. Zelazo, A. Franchi, H. H. Bülthoff, and P. R. Giordano, “Decentralized rigidity maintenance control with range measurements for multi-robot systems,” The International Journal of Robotics Research, vol. 34, no. 1, pp. 105–128, 2015.
  30. L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesimally rigid formations of multi-robot networks,” International Journal of control, vol. 82, no. 3, pp. 423–439, 2009.
  31. Springer, 2013.
  32. M. B. Wakin, The geometry of low-dimensional signal models. PhD thesis, Rice University, 2007.
  33. Springer, 1982.
  34. T. Blumensath, “Compressed sensing with nonlinear observations and related nonlinear optimization problems,” IEEE Transactions on Information Theory, vol. 59, no. 6, pp. 3466–3474, 2013.
  35. D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of swarms of spacecraft using sequential convex programming,” Journal of Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.