Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

On $3$-generated axial algebras of Jordan type $\frac{1}{2}$ (2309.10680v5)

Published 19 Sep 2023 in math.RA and math.GR

Abstract: Axial algebras of Jordan type $\eta$ are a special type of commutative non-associative algebras. They are generated by idempotents whose adjoint operators have the minimal polynomial dividing $(x-1)x(x-\eta)$, where $\eta$ is a fixed value that is not equal to $0$ or $1$. These algebras have restrictive multiplication rules that generalize the Peirce decomposition for idempotents in Jordan algebras. A universal $3$-generated algebra of Jordan type $\frac{1}{2}$ as an algebra with $4$ parameters was constructed by I. Gorshkov and A. Staroletov. Depending on the value of the parameter, the universal algebra may contain a non-trivial form radical. In this paper, we describe all semisimple $3$-generated algebras of Jordan type $\frac{1}{2}$ over a quadratically closed field.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.