Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implicit Incorporation of Heuristics in MPC-Based Control of a Hydrogen Plant (2309.10660v1)

Published 19 Sep 2023 in eess.SY and cs.SY

Abstract: The replacement of fossil fuels in combination with an increasing share of renewable energy sources leads to an increased focus on decentralized microgrids. One option is the local production of green hydrogen in combination with fuel cell vehicles (FCVs). In this paper, we develop a control strategy based on Model Predictive Control (MPC) for an energy management system (EMS) of a hydrogen plant, which is currently under installation in Offenbach, Germany. The plant includes an electrolyzer, a compressor, a low pressure storage tank, and six medium pressure storage tanks with complex heuristic physical coupling during the filling and extraction of hydrogen. Since these heuristics are too complex to be incorporated into the optimal control problem (OCP) explicitly, we propose a novel approach to do so implicitly. First, the MPC is executed without considering them. Then, the so-called allocator uses a heuristic model (of arbitrary complexity) to verify whether the MPC's plan is valid. If not, it introduces additional constraints to the MPC's OCP to implicitly respect the tanks' pressure levels. The MPC is executed again and the new plan is applied to the plant. Simulation results with real-world measurement data of the facility's energy management and realistic fueling scenarios show its advantages over rule-based control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. İnci, M. Büyük, M. H. Demir, and G. İlbey, “A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects,” Renewable and Sustainable Energy Reviews, vol. 137, p. 110648, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032120309321
  2. R. C. Samsun, M. Rex, L. Antoni, and D. Stolten, “Deployment of fuel cell vehicles and hydrogen refueling station infrastructure: a global overview and perspectives,” Energies, vol. 15, no. 14, p. 4975, 2022.
  3. M. Stadie, T. Rodemann, A. Burger, F. Jomrich, S. Limmer, S. Rebhan, and H. Saeki, “V2b vehicle to building charging manager,” in Proceedings of the EVTeC: 5th International Electric Vehicle Technology Conference, 2021. [Online]. Available: https://www.honda-ri.de/pubs/pdf/4658.pdf
  4. C. Huang, Y. Zong, S. You, C. Træholt, Y. Zheng, J. Wang, Z. Zheng, and X. Xiao, “Economic and resilient operation of hydrogen-based microgrids: An improved MPC-based optimal scheduling scheme considering security constraints of hydrogen facilities,” Applied Energy, vol. 335, p. 120762, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261923001265
  5. P. Cardona, R. Costa-Castelló, V. Roda, J. Carroquino, L. Valiño, and M. Serra, “Model predictive control of an on-site green hydrogen production and refuelling station,” International Journal of Hydrogen Energy, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S036031992300383X
  6. M. B. Abdelghany, M. F. Shehzad, V. Mariani, D. Liuzza, and L. Glielmo, “Two-stage model predictive control for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for fuel cell electric vehicles,” International Journal of Hydrogen Energy, vol. 47, no. 75, pp. 32 202–32 222, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360319922031871
  7. T. Kuroki, N. Sakoda, K. Shinzato, M. Monde, and Y. Takata, “Dynamic simulation for optimal hydrogen refueling method to fuel cell vehicle tanks,” International Journal of Hydrogen Energy, vol. 43, no. 11, pp. 5714–5721, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360319918302234
  8. E. Rothuizen, W. Mérida, M. Rokni, and M. Wistoft-Ibsen, “Optimization of hydrogen vehicle refueling via dynamic simulation,” International Journal of Hydrogen Energy, vol. 38, no. 11, pp. 4221–4231, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S036031991300270X
  9. H. K. Singh, T. Ray, M. J. Rana, S. Limmer, T. Rodemann, and M. Olhofer, “Investigating the use of linear programming and evolutionary algorithms for multi-objective electric vehicle charging problem,” IEEE Access, vol. 10, pp. 115 322–115 337, 2022.
  10. T. Ishihara and S. Limmer, “Optimizing the hyperparameters of a mixed integer linear programming solver to speed up electric vehicle charging control,” in Applications of Evolutionary Computation: 23rd European Conference, EvoApplications 2020, Held as Part of EvoStar 2020, Seville, Spain, April 15–17, 2020, Proceedings 23.   Springer, 2020, pp. 37–53.
  11. J. Cai and J. E. Braun, “A generalized control heuristic and simplified model predictive control strategy for direct-expansion air-conditioning systems,” Science and Technology for the Built Environment, vol. 21, no. 6, pp. 773–788, 2015. [Online]. Available: https://doi.org/10.1080/23744731.2015.1040327
  12. R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using model predictive control with a terminal cost,” Annual Reviews in Control, vol. 35, no. 2, pp. 178–186, 2011.
  13. J. L. Nabais, R. R. Negenborn, R. B. C. Benítez, and M. A. Botto, “A constrained MPC heuristic to achieve a desired transport modal split at intermodal hubs,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013).   IEEE, 2013, pp. 714–719.
  14. C. D’Ambrosio, A. Lodi, and S. Martello, “Piecewise linear approximation of functions of two variables in MILP models,” Operations Research Letters, vol. 38, no. 1, pp. 39–46, 2010.
  15. T. Schmitt, T. Rodemann, and J. Adamy, “Multi-objective model predictive control for microgrids,” at - Automatisierungstechnik, vol. 68, no. 8, pp. 687 – 702, 2020. [Online]. Available: https://www.honda-ri.de/pubs/pdf/4361.pdf
  16. T. Schmitt, “Multi-objective building energy management optimization with model predictive control,” Ph.D. dissertation, Technische Universität Darmstadt, Darmstadt, 2022. [Online]. Available: http://tuprints.ulb.tu-darmstadt.de/22344/
  17. T. Schmitt, M. Hoffmann, T. Rodemann, and J. Adamy, “Incorporating human preferences in decision making for dynamic multi-objective optimization in Model Predictive Control,” Inventions, vol. 7, no. 3, 2022. [Online]. Available: https://www.mdpi.com/2411-5134/7/3/46
  18. T. Schmitt, J. Engel, T. Rodemann, and J. Adamy, “Application of Pareto optimization in an economic model predictive controlled microgrid,” in 2020 28th Mediterranean Conference on Control and Automation (MED).   IEEE, 2020, pp. 868–874. [Online]. Available: https://www.honda-ri.de/pubs/pdf/4341.pdf
  19. J. Engel, T. Schmitt, T. Rodemann, and J. Adamy, “Hierarchical economic model predictive control approach for a building energy management system with scenario-driven EV charging,” IEEE Transactions on Smart Grid, pp. 1–1, 2022.
  20. T. Schmitt, T. Rodemann, and J. Adamy, “The cost of photovoltaic forecasting errors in microgrid control with peak pricing,” Energies, vol. 14, no. 9, 2021. [Online]. Available: https://www.mdpi.com/1996-1073/14/9/2569
  21. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  22. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  23. T. Schmitt, J. Engel, and T. Rodemann, “Regression-based model error compensation for a hierarchical MPC building energy management system,” in 2023 IEEE Conference on Control Technology and Applications (CCTA), 2023, accepted (preprint available at https://arxiv.org/abs/2306.09080).

Summary

We haven't generated a summary for this paper yet.