Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$Γ$-convergence of Nonlocal Dirichlet Energies With Penalty Formulations of Dirichlet Boundary Data (2309.10352v2)

Published 19 Sep 2023 in math.AP, cs.NA, and math.NA

Abstract: We study nonlocal Dirichlet energies associated with a class of nonlocal diffusion models on a bounded domain subject to the conventional local Dirichlet boundary condition. The goal of this paper is to give a general framework to correctly impose Dirichlet boundary condition in nonlocal diffusion model. To achieve this, we formulate the Dirichlet boundary condition as a penalty term and use theory of $\varGamma$-convergence to study the correct form of the penalty term. Based on the analysis of $\varGamma$-convergence, we prove that the Dirichlet boundary condition can be correctly imposed in nonlocal diffusion model in the sense of $\varGamma$-convergence as long as the penalty term satisfies a few mild conditions. This work provides a theoretical foundation for approximate Dirichlet boundary condition in nonlocal diffusion model.

Summary

We haven't generated a summary for this paper yet.