Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 218 tok/s Pro
2000 character limit reached

Predicting fine-scale taxonomic variation in landscape vegetation using large satellite imagery data sets (2309.10325v1)

Published 19 Sep 2023 in stat.ME and stat.AP

Abstract: Accurate information on the distribution of vegetation species is used as a proxy for the health of an ecosystem, a currency of international environmental treaties, and a necessary planning tool for forest preservation and rehabilitation, to name just a few of its applications. However, direct, extensive observation of vegetation across large geographic regions can be very expensive. The extensive coverage and high temporal resolution of remote sensing data collected by satellites like the European Space Agency's Sentinel-2 system could be a critical component of a solution to this problem. We propose a hierarchical model for predicting vegetation cover that incorporates high resolution satellite imagery, landscape characteristics such as elevation and slope, and direct observation of vegetation cover. Besides providing model-based predictions of vegetation cover with accompanying uncertainty quantification, our proposed model offers inference about the effects of landscape characteristics on vegetation type. Implementation of the model is computationally challenging due to the volume and spatial extent of data involved. Thus, we propose an efficient, approximate method for model fitting that is able to make use of all available observations. We demonstrate our approach with an application to the distribution of three post-fire resprouting deciduous species in the Jemez Mountains of New Mexico.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.