Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust (2309.10318v1)

Published 19 Sep 2023 in cs.AI and cs.CY

Abstract: We present an overview of the literature on trust in AI and AI trustworthiness and argue for the need to distinguish these concepts more clearly and to gather more empirically evidence on what contributes to people s trusting behaviours. We discuss that trust in AI involves not only reliance on the system itself, but also trust in the developers of the AI system. AI ethics principles such as explainability and transparency are often assumed to promote user trust, but empirical evidence of how such features actually affect how users perceive the system s trustworthiness is not as abundance or not that clear. AI systems should be recognised as socio-technical systems, where the people involved in designing, developing, deploying, and using the system are as important as the system for determining whether it is trustworthy. Without recognising these nuances, trust in AI and trustworthy AI risk becoming nebulous terms for any desirable feature for AI systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andreas Duenser (3 papers)
  2. David M. Douglas (1 paper)
Citations (3)