Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable Communication Model to Realize Integrated Access and Backhaul (IAB) in 5G (2309.10166v1)

Published 18 Sep 2023 in cs.NI, cs.ET, cs.NA, cs.PF, and math.NA

Abstract: Our vision of the future world is one wherein everything, anywhere and at any time, can reliably communicate in real time. 5G, the fifth generation of cellular networks, is anticipated to use heterogeneity to deliver ultra-high data rates to a vastly increased number of devices in ultra-dense areas. Improving the backhaul network capacity is one of the most important open challenges for deploying a 5G network. A promising solution is Integrated Access and Backhaul (IAB), which assigns a portion of radio resources to construct a multi-hop wireless backhaul network. Although 3GPP has acknowledged the cost-effectiveness of the IAB-enabled framework and its orchestration has been extensively studied in the literature, its transmission capacity (i.e., the number of base stations it can support) has not been sufficiently investigated. In this paper, we formulate the problem of maximizing transmission capacity and minimizing transmit powers for IAB-enabled multi-hop networks, taking into account relay selection, channel assignment, and power control constraints. Then, the solution space of the problem is analyzed, two optimality bounds are derived, and a heuristic algorithm is proposed to investigate the bounds. The claims are finally supported by numerical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. T. Taleb, A. Ksentini, H. Hellaoui, and O. Bekkouche, “On Supporting UAV Based Services in 5G and Beyond Mobile Systems,” IEEE Network, vol. 35, no. 4, pp. 220–227, Jul. 2021.
  2. M. Maiouak and T. Taleb, “Dynamic Maps for Automated Driving and UAV Geofencing,” IEEE Wireless Communications, vol. 26, no. 4, pp. 54–59, Aug. 2019.
  3. N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899–922, Dec. 2016.
  4. A. Makris, A. Boudi, M. Coppola, L. Cordeiro, M. Corsini, P. Dazzi, F. D. Andilla, Y. González Rozas, M. Kamarianakis, M. Pateraki, T. L. Pham, A. Protopsaltis, A. Raman, A. Romussi, L. Rosa, E. Spatafora, T. Taleb, T. Theodoropoulos, K. Tserpes, E. Zschau, and U. Herzog, “Cloud for Holography and Augmented Reality,” in 2021 IEEE 10th International Conference on Cloud Networking (CloudNet), Nov. 2021, pp. 118–126.
  5. T. Taleb, A. Boudi, L. Rosa, L. Cordeiro, T. Theodoropoulos, K. Tserpes, P. Dazzi, A. I. Protopsaltis, and R. Li, “Toward Supporting XR Services: Architecture and Enablers,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3567–3586, Feb. 2023.
  6. T. Taleb, N. Sehad, Z. Nadir, and J. Song, “VR-based Immersive Service Management in B5G Mobile Systems: A UAV Command and Control Use Case,” IEEE Internet of Things Journal, pp. 1–1, 2022.
  7. T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely Interactive and Low-Latency Services in 5G and Beyond Mobile Systems,” IEEE Communications Standards Magazine, vol. 5, no. 2, pp. 114–119, Jun. 2021.
  8. Z. Qadir, K. N. Le, N. Saeed, and H. S. Munawar, “Towards 6G Internet of Things: Recent advances, use cases, and open challenges,” ICT Express, Jun. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405959522000959
  9. H. Yu, T. Taleb, J. Zhang, and H. Wang, “Deterministic Latency Bounded Network Slice Deployment in IP-Over-WDM Based Metro-Aggregation Networks,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 2, pp. 596–607, Mar. 2022.
  10. H. Yu, T. Taleb, and J. Zhang, “Deterministic Latency/Jitter-Aware Service Function Chaining Over Beyond 5G Edge Fabric,” IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp. 2148–2162, Sep. 2022.
  11. ——, “Deep Reinforcement Learning based Deterministic Routing and Scheduling for Mixed-Criticality Flows,” IEEE Transactions on Industrial Informatics, pp. 1–11, 2022.
  12. M. Shokrnezhad and T. Taleb, “Near-optimal Cloud-Network Integrated Resource Allocation for Latency-Sensitive B5G,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Dec. 2022, pp. 4498–4503.
  13. Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa, “Immersive Services over 5G and Beyond Mobile Systems,” IEEE Network, vol. 35, no. 6, pp. 299–306, Nov. 2021.
  14. Y. Zhang, M. A. Kishk, and M.-S. Alouini, “A Survey on Integrated Access and Backhaul Networks,” Frontiers in Communications and Networks, vol. 2, 2021. [Online]. Available: https://www.frontiersin.org/articles/10.3389/frcmn.2021.647284
  15. 3GPP, “NR; Study on integrated access and backhaul,” Technical report (TR) 38.874, Jan. 2019.
  16. M. Polese, M. Giordani, T. Zugno, A. Roy, S. Goyal, D. Castor, and M. Zorzi, “Integrated Access and Backhaul in 5G mmWave Networks: Potential and Challenges,” IEEE Communications Magazine, vol. 58, no. 3, pp. 62–68, Mar. 2020.
  17. Y. Liu, A. Tang, and X. Wang, “Joint Incentive and Resource Allocation Design for User Provided Network Under 5G Integrated Access and Backhaul Networks,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 2, pp. 673–685, Apr. 2020.
  18. M. Pagin, T. Zugno, M. Polese, and M. Zorzi, “Resource Management for 5G NR Integrated Access and Backhaul: A Semi-Centralized Approach,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 753–767, Feb. 2022.
  19. H. Alghafari and M. S. Haghighi, “Decentralized joint resource allocation and path selection in multi-hop integrated access backhaul 5G networks,” Computer Networks, vol. 207, p. 108837, Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128622000524
  20. B. Lim, J.-H. Lee, J.-H. Kwon, and Y.-C. Ko, “Joint Association and Resource Allocation for Multi-Hop Integrated Access and Backhaul (IAB) Network,” Aug. 2021, arXiv:2108.04483 [cs, eess, math]. [Online]. Available: http://arxiv.org/abs/2108.04483
  21. S. Weber, X. Yang, J. Andrews, and G. de Veciana, “Transmission capacity of wireless ad hoc networks with outage constraints,” IEEE Transactions on Information Theory, vol. 51, no. 12, pp. 4091–4102, Dec. 2005.
  22. S. Wen, X. Zhu, Y. Lin, Z. Lin, X. Zhang, and D. Yang, “Achievable Transmission Capacity of Relay-Assisted Device-to-Device (D2D) Communication Underlay Cellular Networks,” in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Sep. 2013, pp. 1–5, iSSN: 1090-3038.
  23. Y. Yang, Y. Zhang, L. Dai, J. Li, S. Mumtaz, and J. Rodriguez, “Transmission Capacity Analysis of Relay-Assisted Device-to-Device Overlay/Underlay Communication,” IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp. 380–389, Feb. 2017.
  24. Z. Lin, Y. Li, S. Wen, Y. Gao, X. Zhang, and D. Yang, “Stochastic geometry analysis of achievable transmission capacity for relay-assisted Device-to-Device networks,” in 2014 IEEE International Conference on Communications (ICC), Jun. 2014, pp. 2251–2256, iSSN: 1938-1883.
  25. M. Sheng, J. Liu, X. Wang, Y. Zhang, H. Sun, and J. Li, “On Transmission Capacity Region of D2D Integrated Cellular Networks With Interference Management,” IEEE Transactions on Communications, vol. 63, no. 4, pp. 1383–1399, Apr. 2015.
  26. R. Sun, B. Yang, Y. Shen, X. Jiang, and T. Taleb, “Covertness and Secrecy Study in Untrusted Relay-Assisted D2D Networks,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 17–30, Jan. 2023.
  27. D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks, vol. 10, no. 6, pp. 1146–1166, Aug. 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570870512000224
  28. M. Andersin, Z. Rosberg, and J. Zander, “Gradual removals in cellular PCS with constrained power control and noise,” Wireless Networks, vol. 2, no. 1, pp. 27–43, Mar. 1996. [Online]. Available: https://doi.org/10.1007/BF01201460
  29. M. Shokrnezhad and S. Khorsandi, “A decentralized channel assignment and power control approach using noncooperative game and Vickrey auction in relay-aided MC-CDMA IoT networks,” Transactions on Emerging Telecommunications Technologies, vol. 30, no. 1, p. e3543, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3543
  30. M. Shokrnezhad and S. Khorsandi., “Joint power control and channel assignment in uplink IoT Networks: A non-cooperative game and auction based approach,” Computer Communications, vol. 118, pp. 1–13, Mar. 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366416304406
Citations (2)

Summary

We haven't generated a summary for this paper yet.