Offline Detection of Misspelled Handwritten Words by Convolving Recognition Model Features with Text Labels (2309.10158v1)
Abstract: Offline handwriting recognition (HWR) has improved significantly with the advent of deep learning architectures in recent years. Nevertheless, it remains a challenging problem and practical applications often rely on post-processing techniques for restricting the predicted words via lexicons or LLMs. Despite their enhanced performance, such systems are less usable in contexts where out-of-vocabulary words are anticipated, e.g. for detecting misspelled words in school assessments. To that end, we introduce the task of comparing a handwriting image to text. To solve the problem, we propose an unrestricted binary classifier, consisting of a HWR feature extractor and a multimodal classification head which convolves the feature extractor output with the vector representation of the input text. Our model's classification head is trained entirely on synthetic data created using a state-of-the-art generative adversarial network. We demonstrate that, while maintaining high recall, the classifier can be calibrated to achieve an average precision increase of 19.5% compared to addressing the task by directly using state-of-the-art HWR models. Such massive performance gains can lead to significant productivity increases in applications utilizing human-in-the-loop automation.
- Zamora-Martinez, F. et al. Neural network language models for off-line handwriting recognition. Pattern Recognition 47, 1642–1652 (2014). [2] Puigcerver, J. Are multidimensional recurrent layers really necessary for handwritten text recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 67–72 (2017). [3] Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. V. Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Puigcerver, J. Are multidimensional recurrent layers really necessary for handwritten text recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 67–72 (2017). [3] Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. V. Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. V. Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Puigcerver, J. Are multidimensional recurrent layers really necessary for handwritten text recognition? 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 67–72 (2017). [3] Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. V. Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Dutta, K., Krishnan, P., Mathew, M. & Jawahar, C. V. Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Improving cnn-rnn hybrid networks for handwriting recognition. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 80–85 (2018). [4] Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Swaileh, W., Paquet, T., Soullard, Y. & Tranouez, P. Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Handwriting recognition with multigrams. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 137–142 (2017). [5] Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Schall, M., Schambach, M. P. & Franz, M. O. Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Increasing robustness of handwriting recognition using character n-gram decoding on large lexica. 2016 12th IAPR Workshop on Document Analysis Systems (DAS) 156–161 (2016). [6] Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sharma, A. & Jayagopi, D. B. Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Handwritten essay grading on mobiles using mdlstm model and word embeddings. Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing 1–8 (2018). [7] Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Voigtlaender, P., Doetsch, P. & Ney, H. Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Handwriting recognition with large multidimensional long short-term memory recurrent neural networks. 2016 15th international conference on frontiers in handwriting recognition (ICFHR) 228–233 (2016). [8] Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Castro, D., Bezerra, B. L. & Valenca, M. Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Boosting the deep multidimensional long-short-term memory network for handwritten recognition systems. 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR) 127–132 (2018). [9] Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Wigington, C. et al. Data augmentation for recognition of handwritten words and lines using a cnn-lstm network. 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) 1, 639–645 (2017). [10] Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Stuner, B., Chatelain, C. & Paquet, T. Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Handwriting recognition using cohort of lstm and lexicon verification with extremely large lexicon. Multimedia Tools and Applications 79, 34407–34427 (2020). [11] Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Bruno, S., Clement, C. & Thierry, P. A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- A lexicon verification strategy in a blstm cascade framework. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR) 234–239 (2016). [12] Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sutskever, I., Vinyals, O. & Le, Q. Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Sequence to sequence learning with neural networks. Advances in neural information processing systems 27 (2014). [13] Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Sueiras, J., Ruiz, V., Sanchez, A. & Velez, J. Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018). [14] Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ly, N., Nguyen, H. & Nakagawa, M. 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- 2d self-attention convolutional recurrent network for offline handwritten text recognition. International Conference on Document Analysis and Recognition 191–204 (2021). [15] Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Mondal, R., Malakar, S., Smith, E. H. B. & Sarkar, R. Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Handwritten English word recognition using a deep learning based object detection architecture. Multimedia Tools and Applications 1–26 (2021). [16] Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Yousef, M., Hussain, K. F. & Mohammed, U. S. Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Accurate, data-efficient, unconstrained text recognition with convolutional neural networks. Pattern Recognition 108, 107482 (2020). [17] Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Ptucha, R. et al. Intelligent character recognition using fully convolutional neural networks. Pattern Recognition 88, 604–613 (2019). [18] Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusiñol, M., Fornés, A. & Villegas, M. Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Pay attention to what you read: Non-recurrent handwritten text-line recognition. arXiv preprint arXiv:2005.13044 (2020). [19] Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Wick, C., Zöllner, J. & Grüning, T. Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Transformer for handwritten text recognition using bidirectional post-decoding. International Conference on Document Analysis and Recognition 112–126 (2021). [20] Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Marti, U. V. & Bunke, H. The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002). [21] Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Augustin, E. et al. RIMES evaluation campaign for handwritten mail processing. International Workshop on Frontiers in Handwriting Recognition (IWFHR’06) 231–235 (2006). [22] Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Lee, A., Chung, J. & Lee, M. GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- GNHK: A dataset for english handwriting in the wild. International Conference on Document Analysis and Recognition 399–412 (2021). [23] Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Alonso, E., Moysset, B. & Messina, R. Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Adversarial generation of handwritten text images conditioned on sequences. 2019 International Conference on Document Analysis and Recognition (ICDAR) 481–486 (2019). [24] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S. & Litman, R. Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Scrabblegan: Semi-supervised varying length handwritten text generation. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition 4324–4333 (2020). [25] Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Huu, M., Ho, S., Nguyen, V. & Ngo, T. Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Multilingual-gan: A multilingual gan-based approach for handwritten generation. 2021 International Conference on Multimedia Analysis and Pattern Recognition (MAPR) 1–6 (2021). [26] Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Kang, L. et al. Ganwriting: content-conditioned generation of styled handwritten word images. European Conference on Computer Vision 273–289 (2020). [27] Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornés, A. & Villegas, M. Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Distilling content from style for handwritten word recognition. 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) 139–144 (2020). [28] Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Kang, L., Riba, P., Rusinol, M., Fornes, A. & Villegas, M. Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Content and style aware generation of text-line images for handwriting recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021). [29] Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Davis, B. et al. Text and style conditioned gan for generation of offline handwriting lines. arXiv preprint arXiv:2009.00678 (2020). [30] Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Agarwal, S., Godbole, S., Punjani, D. & Roy, S. How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- How much noise is too much: A study in automatic text classification. Seventh IEEE International Conference on Data Mining. ICDM 2007 3–12 (2007). [31] Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Overflow, S. Generate misspelled words (typos). https://stackoverflow.com/a/51080546/11141183 (2022). Accessed: May 10, 2022. [32] Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6. Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.
- Flor, A. Handwritten text recognition (htr) using tensorflow 2.x. https://github.com/arthurflor23/handwritten-text-recognition (2020). Version: v0.0.6.