Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via $\ell_0$-Constrained Portfolio (2309.10152v3)

Published 22 Jul 2023 in q-fin.PM, cs.CE, and cs.LG

Abstract: Sparse index tracking is a prominent passive portfolio management strategy that constructs a sparse portfolio to track a financial index. A sparse portfolio is preferable to a full portfolio in terms of reducing transaction costs and avoiding illiquid assets. To achieve portfolio sparsity, conventional studies have utilized $\ell_p$-norm regularizations as a continuous surrogate of the $\ell_0$-norm regularization. Although these formulations can construct sparse portfolios, their practical application is challenging due to the intricate and time-consuming process of tuning parameters to define the precise upper limit of assets in the portfolio. In this paper, we propose a new problem formulation of sparse index tracking using an $\ell_0$-norm constraint that enables easy control of the upper bound on the number of assets in the portfolio. Moreover, our approach offers a choice between constraints on portfolio and turnover sparsity, further reducing transaction costs by limiting asset updates at each rebalancing interval. Furthermore, we develop an efficient algorithm for solving this problem based on a primal-dual splitting method. Finally, we illustrate the effectiveness of the proposed method through experiments on the S&P500 and Russell3000 index datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. B. Malkiel, “Passive investment strategies and efficient markets,” European Financial Management, vol. 9, pp. 1–10, 03 2003.
  2. R. Fuller, B. Han, and Y. Tung, “Thinking about indices and “passive” versus active management,” Journal of Portfolio Management, vol. 36, pp. 35–47, 07 2010.
  3. B. M. Barber and T. Odean, “Trading is hazardous to your wealth: The common stock investment performance of individual investors,” The journal of Finance, vol. 55, no. 2, pp. 773–806, 2000.
  4. A. A. Gaivoronski, S. Krylov, and N. van der Wijst, “Optimal portfolio selection and dynamic benchmark tracking,” European Journal of Operational Research, vol. 163, no. 1, pp. 115–131, 2005, financial Modelling and Risk Management.
  5. K. Benidis, Y. Feng, and D. P. Palomar, “Sparse portfolios for high-dimensional financial index tracking,” IEEE Transactions on Signal Processing, vol. 66, no. 1, pp. 155–170, 2018.
  6. K. Benidis, Y. Feng, and D. P. Palomar, “Optimization methods for financial index tracking: From theory to practice,” Foundations and Trends® in Optimization, vol. 3, no. 3, pp. 171–279, 2018.
  7. Y. Zheng, T. M. Hospedales, and Y. Yang, “Diversity and sparsity: A new perspective on index tracking,” in 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1768–1772.
  8. X. P. Li, Z. Shi, C. Leung, and H. C. So, “Sparse index tracking with k-sparsity or ε𝜀\varepsilonitalic_ε-deviation constraint via l0subscript𝑙0l_{0}italic_l start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-norm minimization,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14, 2022.
  9. K. J. Oh, T. Y. Kim, and S. Min, “Using genetic algorithm to support portfolio optimization for index fund management,” Expert Systems with Applications, vol. 28, no. 2, pp. 371–379, 2005.
  10. C. Dose and S. C., “Clustering of financial time series with application to index and enhanced index tracking portfolio,” Physica A: Statistical Mechanics and its Applications, vol. 355, no. 1, pp. 145–151, 2005, market Dynamics and Quantitative Economics.
  11. D. Bianchi and A. Gargano, “High-dimensional index tracking with cointegrated assets using an hybrid genetic algorithm,” Capital Markets: Asset Pricing & Valuation eJournal, 03 2011.
  12. C. A., “Optimal hedging using cointegration,” Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 357, pp. 2039–2058, 08 1999.
  13. M. Yaghoobi, D. Wu, and M. E. Davies, “Fast non-negative orthogonal matching pursuit,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1229–1233, 2015.
  14. T. T. Nguyen, J. Idier, C. Soussen, and E. Djermoune, “Non-negative orthogonal greedy algorithms,” IEEE Transactions on Signal Processing, vol. 67, no. 21, pp. 5643–5658, 2019.
  15. M. Hong, Z. Luo, and M. Razaviyayn, “Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 3836–3840.
  16. G. Li and T. Pong, “Global convergence of splitting methods for nonconvex composite optimization,” SIAM Journal on Optimization, vol. 25, pp. 2434–2460, 09 2015.
  17. S. Ono, “L0subscript𝐿0L_{0}italic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT gradient projection,” IEEE Transactions on Image Processing, vol. 26, no. 4, p. 1554–1564, Apr. 2017.
  18. X. P. Li, Z.-L. Shi, Q. Liu, and H. C. So, “Fast robust matrix completion via entry-wise ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-norm minimization,” IEEE Transactions on Cybernetics, vol. 53, no. 11, pp. 7199–7212, 2023.
  19. Z. Liu, X. P. Li, and H. C. So, “ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-norm minimization-based robust matrix completion approach for mimo radar target localization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 6759–6770, 2023.
  20. X. P. Li, Y. Yan, E. E. Kuruoglu, H. C. So, and Y. Chen, “Robust recovery for graph signal via ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-norm regularization,” IEEE Signal Processing Letters, vol. 30, pp. 1322–1326, 2023.
  21. L. Condat, “A primal–dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms,” Journal of Optimization Theory and Applications, vol. 158, 08 2013.
  22. D. Maringer and O. Oyewumi, “Index tracking with constrained portfolios,” Int. Syst. in Accounting, Finance and Management, vol. 15, pp. 57–71, 06 2007.
  23. J. Beasley, N. Meade, and T.-J. Chang, “An evolutionary heuristic for the index tracking problem,” European Journal of Operational Research, vol. 148, no. 3, pp. 621–643, 2003.
  24. R. Jansen and R. Dijk, “Optimal benchmark tracking with small portfolios,” Journal of Portfolio Management, vol. 28, pp. 33–39, 12 2002.
  25. J.-J. Moreau, “Dual convex functions and proximal points in a hilbert space,” CRAS, Paris, vol. 255, pp. 2897–2899, 1962.
  26. B. C. Vu, “A splitting algorithm for dual monotone inclusions involving cocoercive operators,” Advances in Computational Mathematics, vol. 38, no. 3, pp. 667–681, 2013.
  27. A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” Journal of mathematical imaging and vision, vol. 40, no. 1, pp. 120–145, 2011.
  28. L. Condat, “A generic proximal algorithm for convex optimization—application to total variation minimization,” IEEE Signal Processing Letters, vol. 21, no. 8, pp. 985–989, 2014.
  29. S. Ono and I. Yamada, “Hierarchical convex optimization with primal-dual splitting,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 373–388, 2014.
  30. S. Ono, “Primal-dual plug-and-play image restoration,” IEEE Signal Processing Letters, vol. 24, no. 8, pp. 1108–1112, 2017.
  31. J. Boulanger, N. Pustelnik, L. Condat, L. Sengmanivong, and T. Piolot, “Nonsmooth convex optimization for structured illumination microscopy image reconstruction,” Inverse Problems, vol. 34, no. 9, p. 095004, 2018.
  32. S. Kyochi, S. Ono, and I. W. Selesnick, “Epigraphical relaxation for minimizing layered mixed norms,” IEEE Transactions on Signal Processing, vol. 69, pp. 2923–2938, 2021.
  33. S. Takemoto, K. Naganuma, and S. Ono, “Graph spatio-spectral total variation model for hyperspectral image denoising,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  34. K. Naganuma and S. Ono, “A general destriping framework for remote sensing images using flatness constraint,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
  35. E. Yamagata and S. Ono, “Robust time-varying graph signal recovery for dynamic physical sensor network data,” arXiv:2202.06432, 2023.
  36. N. Komodakis and J.-C. Pesquet, “Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems,” IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 31–54, 2015.
  37. L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi, “Proximal splitting algorithms for convex optimization: A tour of recent advances, with new twists,” SIAM Review, vol. 65, no. 2, pp. 375–435, 2023.
  38. L. Condat and A. Hirabayashi, “Cadzow denoising upgraded: A new projection method for the recovery of dirac pulses from noisy linear measurements,” Sampling Theory in Signal and Image Processing, vol. 14, no. 1, pp. 17–47, 2015.
  39. Z.-L. Shi, X. P. Li, C.-S. Leung, and H. C. So, “Cardinality constrained portfolio optimization via alternating direction method of multipliers,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 2, pp. 2901–2909, 2024.
Citations (1)

Summary

We haven't generated a summary for this paper yet.