Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Watch the Speakers: A Hybrid Continuous Attribution Network for Emotion Recognition in Conversation With Emotion Disentanglement (2309.09799v2)

Published 18 Sep 2023 in cs.CL, cs.SD, and eess.AS

Abstract: Emotion Recognition in Conversation (ERC) has attracted widespread attention in the natural language processing field due to its enormous potential for practical applications. Existing ERC methods face challenges in achieving generalization to diverse scenarios due to insufficient modeling of context, ambiguous capture of dialogue relationships and overfitting in speaker modeling. In this work, we present a Hybrid Continuous Attributive Network (HCAN) to address these issues in the perspective of emotional continuation and emotional attribution. Specifically, HCAN adopts a hybrid recurrent and attention-based module to model global emotion continuity. Then a novel Emotional Attribution Encoding (EAE) is proposed to model intra- and inter-emotional attribution for each utterance. Moreover, aiming to enhance the robustness of the model in speaker modeling and improve its performance in different scenarios, A comprehensive loss function emotional cognitive loss $\mathcal{L}_{\rm EC}$ is proposed to alleviate emotional drift and overcome the overfitting of the model to speaker modeling. Our model achieves state-of-the-art performance on three datasets, demonstrating the superiority of our work. Another extensive comparative experiments and ablation studies on three benchmarks are conducted to provided evidence to support the efficacy of each module. Further exploration of generalization ability experiments shows the plug-and-play nature of the EAE module in our method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. M. Munikar, S. Shakya, and A. Shrestha, “Fine-grained sentiment classification using bert,” in 2019 Artificial Intelligence for Transforming Business and Society (AITB), vol. 1.   IEEE, 2019, pp. 1–5.
  2. D. Yin, T. Meng, and K.-W. Chang, “Sentibert: A transferable transformer-based architecture for compositional sentiment semantics,” arXiv preprint arXiv:2005.04114, 2020.
  3. H. H. Do, P. W. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based sentiment analysis: a comparative review,” Expert systems with applications, vol. 118, pp. 272–299, 2019.
  4. C. Sun, L. Huang, and X. Qiu, “Utilizing bert for aspect-based sentiment analysis via constructing auxiliary sentence,” in Proceedings of NAACL-HLT, 2019, pp. 380–385.
  5. E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, “Sentiment analysis is a big suitcase,” IEEE Intelligent Systems, vol. 32, no. 6, pp. 74–80, 2017.
  6. N. Anstead and B. O’Loughlin, “Social media analysis and public opinion: The 2010 uk general election,” Journal of computer-mediated communication, vol. 20, no. 2, pp. 204–220, 2015.
  7. T. B. Sheridan, “Human–robot interaction: status and challenges,” Human factors, vol. 58, no. 4, pp. 525–532, 2016.
  8. H. Rashkin, E. M. Smith, M. Li, and Y.-L. Boureau, “Towards empathetic open-domain conversation models: A new benchmark and dataset,” arXiv preprint arXiv:1811.00207, 2018.
  9. G. Qixiang, G. Dong, Y. Mou, L. Wang, C. Zeng, D. Guo, M. Sun, and W. Xu, “Exploiting domain-slot related keywords description for few-shot cross-domain dialogue state tracking,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.   Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 2460–2465. [Online]. Available: https://aclanthology.org/2022.emnlp-main.157
  10. W. Zeng, K. He, Z. Wang, D. Fu, G. Dong, R. Geng, P. Wang, J. Wang, C. Sun, W. Wu et al., “Semi-supervised knowledge-grounded pre-training for task-oriented dialog systems,” arXiv preprint arXiv:2210.08873, 2022.
  11. M. Sun, Q. Gao, Y. Mou, G. Dong, R. Liu, and W. Guo, “Improving few-shot performance of dst model through multitask to better serve language-impaired people,” in 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW).   IEEE, 2023, pp. 1–5.
  12. W. Shen, S. Wu, Y. Yang, and X. Quan, “Directed acyclic graph network for conversational emotion recognition,” arXiv preprint arXiv:2105.12907, 2021.
  13. N. Majumder, S. Poria, D. Hazarika, R. Mihalcea, A. Gelbukh, and E. Cambria, “Dialoguernn: An attentive rnn for emotion detection in conversations,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 6818–6825.
  14. D. Ghosal, N. Majumder, A. Gelbukh, R. Mihalcea, and S. Poria, “Cosmic: Commonsense knowledge for emotion identification in conversations,” arXiv preprint arXiv:2010.02795, 2020.
  15. D. Hazarika, S. Poria, R. Mihalcea, E. Cambria, and R. Zimmermann, “Icon: Interactive conversational memory network for multimodal emotion detection,” in Proceedings of the 2018 conference on empirical methods in natural language processing, 2018, pp. 2594–2604.
  16. W. Jiao, H. Yang, I. King, and M. R. Lyu, “Higru: Hierarchical gated recurrent units for utterance-level emotion recognition,” arXiv preprint arXiv:1904.04446, 2019.
  17. P. Zhong, D. Wang, and C. Miao, “Knowledge-enriched transformer for emotion detection in textual conversations,” arXiv preprint arXiv:1909.10681, 2019.
  18. D. Ghosal, N. Majumder, S. Poria, N. Chhaya, and A. Gelbukh, “Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation,” arXiv preprint arXiv:1908.11540, 2019.
  19. W. Shen, J. Chen, X. Quan, and Z. Xie, “Dialogxl: All-in-one xlnet for multi-party conversation emotion recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 15, 2021, pp. 13 789–13 797.
  20. S. Li, H. Yan, and X. Qiu, “Contrast and generation make bart a good dialogue emotion recognizer,” in Proceedings of the AAAI conference on artificial intelligence, vol. 36, no. 10, 2022, pp. 11 002–11 010.
  21. H. Chen, P. Hong, W. Han, N. Majumder, and S. Poria, “Dialogue relation extraction with document-level heterogeneous graph attention networks,” Cognitive Computation, pp. 1–10, 2023.
  22. Y. Sun, N. Yu, and G. Fu, “A discourse-aware graph neural network for emotion recognition in multi-party conversation,” in Findings of the Association for Computational Linguistics: EMNLP 2021, 2021, pp. 2949–2958.
  23. G. Dong, Z. Wang, J. Zhao, G. Zhao, D. Guo, D. Fu, T. Hui, C. Zeng, K. He, X. Li et al., “A multi-task semantic decomposition framework with task-specific pre-training for few-shot ner,” arXiv preprint arXiv:2308.14533, 2023.
  24. Z. Liu, G. I. Winata, P. Xu, and P. Fung, “Coach: A coarse-to-fine approach for cross-domain slot filling,” arXiv preprint arXiv:2004.11727, 2020.
  25. S. Schachter and J. Singer, “Cognitive, social, and physiological determinants of emotional state.” Psychological review, vol. 69, no. 5, p. 379, 1962.
  26. G. Dong, D. Guo, L. Wang, X. Li, Z. Wang, C. Zeng, K. He, J. Zhao, H. Lei, X. Cui et al., “Pssat: A perturbed semantic structure awareness transferring method for perturbation-robust slot filling,” arXiv preprint arXiv:2208.11508, 2022.
  27. D. Guo, G. Dong, D. Fu, Y. Wu, C. Zeng, T. Hui, L. Wang, X. Li, Z. Wang, K. He et al., “Revisit out-of-vocabulary problem for slot filling: A unified contrastive framework with multi-level data augmentations,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  28. X. Li, H. Lei, L. Wang, G. Dong, J. Zhao, J. Liu, W. Xu, and C. Zhang, “A robust contrastive alignment method for multi-domain text classification,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2022, pp. 7827–7831.
  29. D. Hu, L. Wei, and X. Huai, “Dialoguecrn: Contextual reasoning networks for emotion recognition in conversations,” in ACL/IJCNLP (1).   Association for Computational Linguistics, 2021, pp. 7042–7052.
  30. W. Zhao, Y. Zhao, and X. Lu, “Cauain: Causal aware interaction network for emotion recognition in conversations,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, 2022, pp. 4524–4530.
  31. L. Zhu, G. Pergola, L. Gui, D. Zhou, and Y. He, “Topic-driven and knowledge-aware transformer for dialogue emotion detection,” arXiv preprint arXiv:2106.01071, 2021.
  32. D. Yu, K. Sun, C. Cardie, and D. Yu, “Dialogue-based relation extraction,” arXiv preprint arXiv:2004.08056, 2020.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  34. G. Dong, R. Li, S. Wang, Y. Zhang, Y. Xian, and W. Xu, “Bridging the kb-text gap: Leveraging structured knowledge-aware pre-training for kbqa,” arXiv preprint arXiv:2308.14436, 2023.
  35. G. Zhao, G. Dong, Y. Shi, H. Yan, W. Xu, and S. Li, “Entity-level interaction via heterogeneous graph for multimodal named entity recognition,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 6345–6350.
  36. M. Guo, Y. Zhang, and T. Liu, “Gaussian transformer: a lightweight approach for natural language inference,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6489–6496.
  37. X. Li, L. Wang, G. Dong, K. He, J. Zhao, H. Lei, J. Liu, and W. Xu, “Generative zero-shot prompt learning for cross-domain slot filling with inverse prompting,” arXiv preprint arXiv:2307.02830, 2023.
  38. G. Dong, Z. Wang, L. Wang, D. Guo, D. Fu, Y. Wu, C. Zeng, X. Li, T. Hui, K. He et al., “A prototypical semantic decoupling method via joint contrastive learning for few-shot named entity recognition,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  39. I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
  40. A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” arXiv preprint arXiv:1607.02533, 2016.
  41. T. Manzini, Y. C. Lim, Y. Tsvetkov, and A. W. Black, “Black is to criminal as caucasian is to police: Detecting and removing multiclass bias in word embeddings,” arXiv preprint arXiv:1904.04047, 2019.
  42. C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, “Iemocap: Interactive emotional dyadic motion capture database,” Language resources and evaluation, vol. 42, pp. 335–359, 2008.
  43. S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea, “Meld: A multimodal multi-party dataset for emotion recognition in conversations,” arXiv preprint arXiv:1810.02508, 2018.
  44. S. M. Zahiri and J. D. Choi, “Emotion detection on tv show transcripts with sequence-based convolutional neural networks,” arXiv preprint arXiv:1708.04299, 2017.
  45. J. Li, Z. Lin, P. Fu, and W. Wang, “Past, present, and future: Conversational emotion recognition through structural modeling of psychological knowledge,” in Findings of the association for computational linguistics: EMNLP 2021, 2021, pp. 1204–1214.
  46. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shanglin Lei (5 papers)
  2. Xiaoping Wang (56 papers)
  3. Guanting Dong (46 papers)
  4. Jiang Li (48 papers)
  5. Yingjian Liu (10 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.