Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Speech Synthesis By Unrolling Diffusion Process using Neural Network Layers (2309.09652v5)

Published 18 Sep 2023 in cs.SD, cs.CL, and eess.AS

Abstract: This work introduces UDPNet, a novel architecture designed to accelerate the reverse diffusion process in speech synthesis. Unlike traditional diffusion models that rely on timestep embeddings and shared network parameters, UDPNet unrolls the reverse diffusion process directly into the network architecture, with successive layers corresponding to equally spaced steps in the diffusion schedule. Each layer progressively refines the noisy input, culminating in a high-fidelity estimation of the original data, (x_0). Additionally, we redefine the learning target by predicting latent variables instead of the conventional (x_0) or noise (\epsilon_0). This shift addresses the common issue of large prediction errors in early denoising stages, effectively reducing speech distortion. Extensive evaluations on single- and multi-speaker datasets demonstrate that UDPNet consistently outperforms state-of-the-art methods in both quality and efficiency, while generalizing effectively to unseen speech. These results position UDPNet as a robust solution for real-time speech synthesis applications. Sample audio is available at https://onexpeters.github.io/UDPNet.

Summary

We haven't generated a summary for this paper yet.