Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Architecture-Aware Synthesis of Stabilizer Circuits from Clifford Tableaus (2309.08972v3)

Published 16 Sep 2023 in quant-ph

Abstract: Since quantum computing is currently in the NISQ-Era, compilation strategies to reduce the number of gates executed on specific hardware are required. In this work, we utilize the concept of synthesis of a data structure called Clifford tableaus, focusing on applying CNOTs within the respective connectivity graph of the quantum device. We hence contribute to the field of compilation or, more precisely, synthesis by reducing the number of CNOTs in the synthesized quantum circuit. Upon convergence, our method shows to outperform other state-of-the-art synthesis techniques, when executed with respect to a specific hardware. Upon executing the resulting circuits on real hardware, our synthesized circuits tend to increase the final fidelity and reduce the overall execution times.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Improved simulation of stabilizer circuits. Physical Review A, 70(5), nov 2004. doi: 10.1103/physreva.70.052328.
  2. On the controlled-NOT complexity of controlled-NOT–phase circuits. Quantum Science and Technology, 4(1):015002, sep 2018. doi: 10.1088/2058-9565/aad8ca. URL https://doi.org/10.1088%2F2058-9565%2Faad8ca.
  3. There and back again: A circuit extraction tale. Quantum, 5:421, 2021.
  4. Ewout van den Berg. A simple method for sampling random clifford operators, 2021.
  5. Hadamard-free circuits expose the structure of the clifford group. IEEE Transactions on Information Theory, 67(7):4546–4563, jul 2021. doi: 10.1109/tit.2021.3081415.
  6. Phase gadget synthesis for shallow circuits. Electronic Proceedings in Theoretical Computer Science, 318:213–228, may 2020. doi: 10.4204/eptcs.318.13.
  7. Clifford group, stabilizer states, and linear and quadratic operations over gf(2). Phys. Rev. A, 68:042318, Oct 2003. doi: 10.1103/PhysRevA.68.042318. URL https://link.aps.org/doi/10.1103/PhysRevA.68.042318.
  8. Graph-theoretic simplification of quantum circuits with the ZX-calculus. Quantum, 4:279, jun 2020. doi: 10.22331/q-2020-06-04-279. URL https://doi.org/10.223312Fq-2020-06-04-279.
  9. Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
  10. Reducing the cnot count for clifford+ t circuits on nisq architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.
  11. Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, jul 2021. doi: 10.22331/q-2021-07-06-497.
  12. Annealing optimisation of mixed zx phase circuits, 2022.
  13. Daniel Gottesman. Stabilizer codes and quantum error correction, 1997.
  14. Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.
  15. Aleks Kissinger and Arianne Meijer van de Griend. Cnot circuit extraction for topologically-constrained quantum memories, 2019.
  16. Paulihedral: a generalized block-wise compiler optimization framework for quantum simulation kernels. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, pages 554–569, 2022.
  17. Simon Martiel and Timothé e Goubault de Brugière. Architecture aware compilation of quantum circuits via lazy synthesis. Quantum, 6:729, jun 2022. doi: 10.22331/q-2022-06-07-729. URL https://doi.org/10.22331%2Fq-2022-06-07-729.
  18. Shorter stabilizer circuits via bruhat decomposition and quantum circuit transformations. IEEE Transactions on Information Theory, 64(7):4729–4738, 2018. doi: 10.1109/TIT.2018.2825602.
  19. Arianne Meijer van de Griend. Towards a generic compilation approach for quantum circuits through resynthesis. arXiv preprint arXiv:2304.08814, 2023.
  20. Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis of phase polynomials for nisq devices, 2020.
  21. Quantum circuit optimizations for NISQ architectures. Quantum Science and Technology, 5(2):025010, mar 2020. doi: 10.1088/2058-9565/ab79b1.
  22. Maarten van den Nest. Classical simulation of quantum computation, the gottesman-knill theorem, and slightly beyond, 2009.
  23. Optimal synthesis of linear reversible circuits. Quantum Inf. Comput., 8(3):282–294, 2008.
  24. Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.
  25. Arianne Meijer van de Griend and Sarah Meng Li. Dynamic qubit routing with cnot circuit synthesis for quantum compilation, 2023.
  26. Phase polynomials synthesis algorithms for nisq architectures and beyond. Quantum Science and Technology, 7(4):045027, 2022.
  27. Stephen Warshall. A theorem on boolean matrices. Journal of the ACM (JACM), 9(1):11–12, 1962.
  28. A recursively partitioned approach to architecture-aware zx polynomial synthesis and optimization, 2023.
  29. Optimization of CNOT circuits on limited-connectivity architecture. Physical Review Research, 5(1), jan 2023. doi: 10.1103/physrevresearch.5.013065. URL https://doi.org/10.1103%2Fphysrevresearch.5.013065.
  30. Richie Yeung. Diagrammatic design and study of ansätze for quantum machine learning, 2020.
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com