Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
29 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
469 tokens/sec
Kimi K2 via Groq Premium
210 tokens/sec
2000 character limit reached

On the UV/IR mixing of Lie algebra-type noncommutatitive $φ^4$-theories (2309.08917v4)

Published 16 Sep 2023 in hep-th, math-ph, and math.MP

Abstract: We show that a UV divergence of the propagator integral implies the divergences of the UV/IR mixing in the two-point function at one-loop for a $\phi4$-theory on a generic Lie algebra-type noncommutative space-time. The UV/IR mixing is defined as a UV divergence of the planar contribution and an IR singularity of the non-planar contribution, the latter being due to the former UV divergence, and the UV finiteness of the non-planar contribution. Some properties of this general treatment are discussed. The UV finiteness of the non-planar contribution and the renormalizability of the theory are not treated but commented. Applications are performed for the Moyal space, having a UV/IR mixing, and the $\kappa$-Minkowski space for which the two-point function at one-loop is finite.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Doplicher, K. Fredenhagen, J.E. Roberts, “The quantum structure of space-time at the Planck scale and quantum fields”, Commun. Math. Phys. 172 (1995) 187, doi:10.1007/BF02104515, arXiv:hep-th/0303037.
  2. H. S. Snyder, “Quantized Space-Time”, Phys. Rev. 71 (1947) 38, doi:10.1103/PhysRev.71.38.
  3. S. Minwalla, M. Van Raamsdonk, N. Seiberg, “Noncommutative perturbative dynamics”, JHEP 02 (2000) 020, doi:10.1088/1126-6708/2000/02/020, arXiv:hep-th/9912072.
  4. A. Micu and M. M. Sheikh-Jabbari, “Noncommutative Φ4superscriptnormal-Φ4\Phi^{4}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory at two loops”, JHEP 01 (2001) 025, doi:10.1088/1126-6708/2001/01/025, arXiv:hep-th/0008057.
  5. A. Matusis, L. Susskind, N. Toumbas, “The IR/UV Connection in the Non-Commutative Gauge Theories”, JHEP 12 (2000) 002, doi:10.1088/1126-6708/2000/12/002, arXiv:hep-th/0002075.
  6. D. N. Blaschke, E. Kronberger, A. Rofner, M. Schweda, R. I. P. Sedmik, M.Wohlgenannt, “On the Problem of Renormalizability in Non-Commutative Gauge Field Models - A Critical Review”, Fortschr. Phys. 58 (2010) 364, doi:10.1002/prop.200900102, arXiv:0908.0467.
  7. H. Grosse and M. Wohlgenannt, “On κ𝜅\kappaitalic_κ-deformation and UV/IR mixing”, Nuc. Phys. B 748 (2006) 473-484, doi:10.1016/j.nuclphysb.2006.05.004, arXiv:hep-th/0507030.
  8. T. Poulain and J.-C. Wallet, “κ𝜅\kappaitalic_κ-Poincaré invariant orientable field theories at one-loop”, JHEP 2019 (2019), doi:10.1007/jhep01(2019)064, arXiv:1808.00350.
  9. M. Dimitrijević Ćirić, N. Konjik, M. A. Kurkov, F. Lizzi and P. Vitale, “Noncommutative field theory from angular twist”, Phys. Rev. D 98 (2018), doi:10.1103/physrevd.98.085011, arXiv:1806.06678.
  10. K. Hersent and J.-C. Wallet, “Field theories on ρ𝜌\rhoitalic_ρ-deformed Minkowski space-time”, arXiv (2023), arXiv:2304.05787.
  11. D. Robbins and S. Sethi, “The UV/IR interplay in theories with space-time varying non-commutativity”, JHEP 07 (2003) 034, doi:10.1088/1126-6708/2003/07/034, arXiv:hep-th/0306193.
  12. R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa, “A translation-invariant renormalizable non-commutative scalar model”, Commun. Math. Phys. 287 (2009) 275, doi:10.1007/s00220-008-0658-3, arXiv:0802.0791.
  13. B. Mirza and M. Zarei, “Cancellation of soft and collinear divergences in noncommutative QED”, Phys. Rev. D 74 (2006), doi:10.1103/physrevd.74.065019, arXiv:hep-th/0609181.
  14. A. Jafar Salim and N. Sadooghi, “Dynamics of the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) model in a strong magnetic background field as a modified noncommutative field theory”, Phys. Rev. D 73 (2006), doi:10.1103/physrevd.73.065023, arXiv:hep-th/0602023.
  15. A. Schenkel and C. F. Uhlemann, “High energy improved scalar quantum field theory from noncommutative geometry without UV/IR-mixing”, Phys. Lett. B 694 (2010) 258-260, doi:10.1016/j.physletb.2010.09.066, arXiv:1002.4191.
  16. H. C. Steinacker, “String states, loops and effective actions in noncommutative field theory and matrix models”, Nuc. Phys. B 910 (2016) 346-373, doi:10.1016/j.nuclphysb.2016.06.029, arXiv:1606.00646.
  17. A. Van-Brunt and M. Visser, “Special-case closed form of the Baker-Campbell-Hausdorff formula”, Jour. Phys. A 48 (2015) 225207, doi:10.1088/1751-8113/48/22/225207, arXiv:1501.02506.
  18. A. Van-Brunt and M. Visser, “Explicit Baker-Campbell-Hausdorff Expansions”, Mathematics 6 (2018) 135, doi:10.3390/math6080135, arXiv:1505.04505
  19. F. Mercati and M. Sergola, “Pauli-Jordan function and scalar field quantization in κ𝜅\kappaitalic_κ-Minkowski noncommutative spacetime”, Phys. Rev. D 98 (2018), doi:10.1103/physrevd.98.045017, arXiv:1801.01765
  20. S. Galluccio, F. Lizzi and P. Vitale, “Translation invariance, commutation relations and ultraviolet/infrared mixing”, JHEP 2009 (2009) 054-054, doi:10.1088/1126-6708/2009/09/054, arXiv:0907.3640.
  21. A. Dietmar and S. Echterhoff, “Principles of harmonic analysis”, Springer (2014), doi:10.1007/978-3-319-05792-7.
  22. A. H. Fatollahi and M. Khorrami, “Field theories on spaces with linear fuzziness”, Europhysics Letters 80 (2007) 20003, doi:10.1209/0295-5075/80/20003, arXiv:hep-th/0612013.
  23. H. Komaie-Moghaddam, A. H. Fatollahi and M. Khorrami, “Field theory amplitudes in a space with S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) fuzziness”, European Physical Journal C 53 (2007) 679-688, doi:10.1140/epjc/s10052-007-0484-3, arXiv:0712.1670.
  24. H. Komaie-Moghaddam, A. H. Fatollahi and M. Khorrami, “Loop diagrams in space with S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) fuzziness”, Phys. Lett. B 661 (2008) 226-232, doi:10.1016/j.physletb.2008.02.002, arXiv:0712.2216.
  25. T. Flik, “Divergences in a field theory on quantum space”, Phys. Let. B 376 (1996) 53-58, doi:10.1016/0370-2693(96)00024-X.
  26. P. Vitale and J.-C. Wallet, “Noncommutative field theories on ℝλ3subscriptsuperscriptℝ3𝜆\mathbb{R}^{3}_{\lambda}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT: towards UV/IR mixing freedom”, JHEP 2013 (2013), doi:10.1007/jhep04(2013)115, arXiv:1212.5131.
  27. N. Craig and S. Koren, “IR dynamics from UV divergences: UV/IR mixing, NCFT, and the hierarchy problem”, JHEP 2020 (2020), doi:10.1007/jhep03(2020)037, arXiv:1909.01365.
  28. H. Steinacker, “Emergent gravity from noncommutative gauge theory”, JHEP 2007 (2007) 049, doi:10.1088/1126-6708/2007/12/049, arXiv:0708.2426.
  29. A. Addazi et al, “Quantum gravity phenomenology at the dawn of the multi-messenger era - A review”, Prog. Part. Nuc. Phys. 125 (2022) 103948, DOI:10.1016/j.ppnp.2022.103948, arXiv:2111.05659.
  30. J. Lukierski, “κ𝜅\kappaitalic_κ-deformations: historical developments and recent results”, Jour. Phys. Conf. Ser. 804 (2017) 012028, DOI:10.1088/1742-6596/804/1/012028, arXiv:1611.10213.
  31. T. Poulain and J.-C. Wallet, “κ𝜅\kappaitalic_κ-Poincaré invariant quantum field theories with Kubo-Martin-Schwinger weight”, Phys. Rev. D 98 (2018), DOI:10.1103/PhysRevD.98.025002, arXiv:1801.02715.
  32. P. Kosiński, J. Lukierski and P. Maślanka, “Local D=4 Field Theory on κ𝜅\kappaitalic_κ-Deformed Minkowski Space”, Phys. Rev. D 62 (2000), doi:10.1103/physrevd.62.025004, arXiv:hep-th/9902037.
  33. G. Amelino-Camelia and M. Arzano, “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D 65 (2002), doi:10.1103/physrevd.65.084044, arXiv:hep-th/0105120.
  34. F. Buscemi, M. Dall’Arno, M. Ozawa and V. Vedral, “Direct observation of any two-point quantum correlation function”, arXiv (2013), arXiv:1312.4240. B. Bertúlio de Lima, S. Azevedo and A. Rosas, “On the measurability of quantum correlation functions”, Annals of Physics 356 (2015) 336-345, doi:10.1016/j.aop.2015.03.012. J. de Ramón, L. J. Garay and E. Martín-Martínez, “Direct measurement of the two-point function in quantum fields”, Phys. Rev. D 98 (2018), doi:10.1103/physrevd.98.105011, arXiv:1807.00013. P. Guilmin, P. Rouchon and A. Tilloy, “Correlation functions for realistic continuous quantum measurement”, arXiv (2023), arXiv:2212.00176.
  35. P. Mathieu and J.-C. Wallet, “Gauge theories on κ𝜅\kappaitalic_κ-Minkowski spaces: Twist and modular operators”, JHEP 2020 (2020) 112 doi:10.1007/JHEP05(2020)112, arXiv:2002.02309.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com