Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-bounded Active Monitoring of Unknown Dynamic Targets in Road-networks with Minimum Fleet (2309.08322v3)

Published 15 Sep 2023 in cs.RO

Abstract: Fleets of unmanned robots can be beneficial for the long-term monitoring of large areas, e.g., to monitor wild flocks, detect intruders, search and rescue. Monitoring numerous dynamic targets in a collaborative and efficient way is a challenging problem that requires online coordination and information fusion. The majority of existing works either assume a passive all-to-all observation model to minimize the summed uncertainties over all targets by all robots, or optimize over the jointed discrete actions while neglecting the dynamic constraints of the robots and unknown behaviors of the targets. This work proposes an online task and motion coordination algorithm that ensures an explicitly-bounded estimation uncertainty for the target states, while minimizing the average number of active robots. The robots have a limited-range perception to actively track a limited number of targets simultaneously, of which their future control decisions are all unknown. It includes: (i) the assignment of monitoring tasks, modeled as a flexible size multiple vehicle routing problem with time windows (m-MVRPTW), given the predicted target trajectories with uncertainty measure in the road-networks; (ii) the nonlinear model predictive control (NMPC) for optimizing the robot trajectories under uncertainty and safety constraints. It is shown that the robots can switch between active and inactive roles dynamically online as required by the unknown monitoring task. The proposed methods are validated via large-scale simulations of up to $100$ robots and targets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. R. Khodayi-mehr, W. Aquino, and M. M. Zavlanos, “Model-based active source identification in complex environments,” IEEE Transactions on Robotics, vol. 35, no. 3, pp. 633–652, 2019.
  2. R. Khodayi-mehr, Y. Kantaros, and M. M. Zavlanos, “Distributed state estimation using intermittently connected robot networks,” IEEE transactions on robotics, vol. 35, no. 3, pp. 709–724, 2019.
  3. M. Guo and M. M. Zavlanos, “Multirobot data gathering under buffer constraints and intermittent communication,” IEEE transactions on robotics, vol. 34, no. 4, pp. 1082–1097, 2018.
  4. M. Tzes, N. Bousias, E. Chatzipantazis, and G. J. Pappas, “Graph neural networks for multi-robot active information acquisition,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 3497–3503.
  5. S. Kalluraya, G. J. Pappas, and Y. Kantaros, “Multi-robot mission planning in dynamic semantic environments,” in IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 1630–1637.
  6. W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Coordinated multi-robot exploration,” IEEE Transactions on robotics, vol. 21, no. 3, pp. 376–386, 2005.
  7. N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Information acquisition with sensing robots: Algorithms and error bounds,” in IEEE International conference on robotics and automation (ICRA), 2014, pp. 6447–6454.
  8. P. Dames, M. Schwager, V. Kumar, and D. Rus, “A decentralized control policy for adaptive information gathering in hazardous environments,” in IEEE Conference on Decision and Control (CDC), 2012, pp. 2807–2813.
  9. T. H. Chung, J. W. Burdick, and R. M. Murray, “A decentralized motion coordination strategy for dynamic target tracking,” in IEEE International Conference on Robotics and Automation (ICRA), 2006, pp. 2416–2422.
  10. B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas, “Anytime planning for decentralized multirobot active information gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1025–1032, 2018.
  11. J. Le Ny and G. J. Pappas, “On trajectory optimization for active sensing in gaussian process models,” in IEEE Conference on Decision and Control (CDC), 2009, pp. 6286–6292.
  12. Y. Kantaros, B. Schlotfeldt, N. Atanasov, and G. J. Pappas, “Asymptotically optimal planning for non-myopic multi-robot information gathering.” in Robotics: Science and Systems, 2019, pp. 22–26.
  13. J. Chen, Z. Tang, and M. Guo, “Accelerated k-serial stable coalition for dynamic capture and resource defense,” IEEE Robotics and Automation Letters, vol. 9, no. 1, pp. 443–450, 2024.
  14. Y. Sung, A. K. Budhiraja, R. K. Williams, and P. Tokekar, “Distributed assignment with limited communication for multi-robot multi-target tracking,” Autonomous Robots, vol. 44, no. 1, pp. 57–73, 2020.
  15. S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed version of the hungarian method for multirobot assignment,” IEEE Transactions on Robotics, vol. 33, no. 4, pp. 932–947, 2017.
  16. P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with aerial robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 3067–3072.
  17. L. Zhou and P. Tokekar, “Sensor assignment algorithms to improve observability while tracking targets,” IEEE Transactions on Robotics, vol. 35, no. 5, pp. 1206–1219, 2019.
  18. P. Dames, P. Tokekar, and V. Kumar, “Detecting, localizing, and tracking an unknown number of moving targets using a team of mobile robots,” The International Journal of Robotics Research, vol. 36, no. 13-14, pp. 1540–1553, 2017.
  19. L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar, “Resilient active target tracking with multiple robots,” IEEE Robotics and Automation Letters, vol. 4, no. 1, pp. 129–136, 2018.
  20. L. Zhou and V. Kumar, “Robust multi-robot active target tracking against sensing and communication attacks,” IEEE Transactions on Robotics, 2023.
  21. Y. Kantaros and G. J. Pappas, “Scalable active information acquisition for multi-robot systems,” in IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 7987–7993.
  22. M. Athans, “On the determination of optimal costly measurement strategies for linear stochastic systems,” Automatica, vol. 8, no. 4, pp. 397–412, 1972.
  23. M. Polacek, R. F. Hartl, K. Doerner, and M. Reimann, “A variable neighborhood search for the multi depot vehicle routing problem with time windows,” Journal of heuristics, vol. 10, pp. 613–627, 2004.
  24. P. P. Repoussis and C. D. Tarantilis, “Solving the fleet size and mix vehicle routing problem with time windows via adaptive memory programming,” Transportation Research Part C: Emerging Technologies, vol. 18, no. 5, pp. 695–712, 2010.
  25. G. OR-Tools, https://github.com/google/or-tools.
  26. Y. Kang and J. K. Hedrick, “Linear tracking for a fixed-wing uav using nonlinear model predictive control,” IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1202–1210, 2009.
  27. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software framework for nonlinear optimization and optimal control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.
  28. M. Guo and D. V. Dimarogonas, “Task and motion coordination for heterogeneous multiagent systems with loosely coupled local tasks,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 797–808, 2016.

Summary

We haven't generated a summary for this paper yet.