Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensuring Topological Data-Structure Preservation under Autoencoder Compression due to Latent Space Regularization in Gauss--Legendre nodes (2309.08228v2)

Published 15 Sep 2023 in cs.LG and math.DG

Abstract: We formulate a data independent latent space regularisation constraint for general unsupervised autoencoders. The regularisation rests on sampling the autoencoder Jacobian in Legendre nodes, being the centre of the Gauss-Legendre quadrature. Revisiting this classic enables to prove that regularised autoencoders ensure a one-to-one re-embedding of the initial data manifold to its latent representation. Demonstrations show that prior proposed regularisation strategies, such as contractive autoencoding, cause topological defects already for simple examples, and so do convolutional based (variational) autoencoders. In contrast, topological preservation is ensured already by standard multilayer perceptron neural networks when being regularised due to our contribution. This observation extends through the classic FashionMNIST dataset up to real world encoding problems for MRI brain scans, suggesting that, across disciplines, reliable low dimensional representations of complex high-dimensional datasets can be delivered due to this regularisation technique.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nature reviews Molecular cell biology, vol. 7, no. 9, pp. 690–696, 2006.
  2. Z. E. Perlman, M. D. Slack, Y. Feng, T. J. Mitchison, L. F. Wu, and S. J. Altschuler, “Multidimensional drug profiling by automated microscopy,” Science, vol. 306, no. 5699, pp. 1194–1198, 2004.
  3. N. Vogt, “Machine learning in neuroscience,” Nature Methods, vol. 15, no. 1, pp. 33–33, 2018.
  4. T. Carlson, E. Goddard, D. M. Kaplan, C. Klein, and J. B. Ritchie, “Ghosts in machine learning for cognitive neuroscience: Moving from data to theory,” NeuroImage, vol. 180, pp. 88–100, 2018.
  5. F. Zhang, S. Cetin Karayumak, N. Hoffmann, Y. Rathi, A. J. Golby, and L. J. O’Donnell, “Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation,” Medical Image Analysis, vol. 65, no. 1, p. 101761, oct 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1361841520301250
  6. G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–440, 2021.
  7. J. F. Rodriguez-Nieva and M. S. Scheurer, “Identifying topological order through unsupervised machine learning,” Nature Physics, vol. 15, no. 8, pp. 790–795, 2019.
  8. A. Willmann, P. Stiller, A. Debus, A. Irman, R. Pausch, Y.-Y. Chang, M. Bussmann, and N. Hoffmann, “Data-driven shadowgraph simulation of a 3d object,” ser. Proceedings of Workshop Simulation with Deep Learning @ ICLR 2021, 2021.
  9. H. Kobayashi, K. C. Cheveralls, M. D. Leonetti, and L. A. Royer, “Self-supervised deep learning encodes high-resolution features of protein subcellular localization,” Nature methods, vol. 19, no. 8, pp. 995–1003, 2022.
  10. S. N. Chandrasekaran, H. Ceulemans, J. D. Boyd, and A. E. Carpenter, “Image-based profiling for drug discovery: due for a machine-learning upgrade?” Nature Reviews Drug Discovery, vol. 20, no. 2, pp. 145–159, 2021.
  11. M. Anitei, R. Chenna, C. Czupalla, M. Esner, S. Christ, S. Lenhard, K. Korn, F. Meyenhofer, M. Bickle, M. Zerial et al., “A high-throughput sirna screen identifies genes that regulate mannose 6-phosphate receptor trafficking,” Journal of cell science, vol. 127, no. 23, pp. 5079–5092, 2014.
  12. K. Nikitina, S. Segeletz, M. Kuhn, Y. Kalaidzidis, and M. Zerial, “Basic phenotypes of endocytic system recognized by independent phenotypes analysis of a high-throughput genomic screen,” in Proceedings of the 2019 3rd International Conference on Computational Biology and Bioinformatics, 2019, pp. 69–75.
  13. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  14. E. Galimov and A. Yakimovich, “A tandem segmentation-classification approach for the localization of morphological predictors of c. elegans lifespan and motility,” Aging (Albany NY), vol. 14, no. 4, p. 1665, 2022.
  15. A. Yakimovich, M. Huttunen, J. Samolej, B. Clough, N. Yoshida, S. Mostowy, E.-M. Frickel, and J. Mercer, “Mimicry embedding facilitates advanced neural network training for image-based pathogen detection,” Msphere, vol. 5, no. 5, pp. e00 836–20, 2020.
  16. D. Fisch, A. Yakimovich, B. Clough, J. Mercer, and E.-M. Frickel, “Image-based quantitation of host cell–toxoplasma gondii interplay using hrman: A host response to microbe analysis pipeline,” Toxoplasma gondii: Methods and protocols, pp. 411–433, 2020.
  17. V. Andriasyan, A. Yakimovich, A. Petkidis, F. Georgi, R. Witte, D. Puntener, and U. F. Greber, “Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells,” Iscience, vol. 24, no. 6, p. 102543, 2021.
  18. G. H. Dunteman, “Basic concepts of principal components analysis,” Principal components analysis, pp. 15–22, 1989.
  19. M. Rolinek, D. Zietlow, and G. Martius, “Variational Autoencoders Pursue PCA Directions (by Accident),” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2019-June.   IEEE, jun 2019, pp. 12 398–12 407. [Online]. Available: https://ieeexplore.ieee.org/document/8953837/
  20. V. Antun, N. M. Gottschling, A. C. Hansen, and B. Adcock, “Deep learning in scientific computing: Understanding the instability mystery,” SIAM NEWS MARCH, vol. 2021, 2021.
  21. N. M. Gottschling, V. Antun, B. Adcock, and A. C. Hansen, “The troublesome kernel: why deep learning for inverse problems is typically unstable,” arXiv preprint arXiv:2001.01258, 2020.
  22. V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen, “On instabilities of deep learning in image reconstruction and the potential costs of AI,” Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30 088–30 095, 2020.
  23. H. Chen, H. Zhang, S. Si, Y. Li, D. Boning, and C.-J. Hsieh, “Robustness verification of tree-based models,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/cd9508fdaa5c1390e9cc329001cf1459-Paper.pdf
  24. S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software for discrimination,” in Proceedings of the 2017 11th Joint meeting on foundations of software engineering, 2017, pp. 498–510.
  25. D. Mazzucato and C. Urban, “Reduced products of abstract domains for fairness certification of neural networks,” in Static Analysis: 28th International Symposium, SAS 2021, Chicago, IL, USA, October 17–19, 2021, Proceedings 28.   Springer, 2021, pp. 308–322.
  26. S. Lang, “Differential manifolds,” Springer, 1985.
  27. S. G. Krantz and H. R. Parks, “The implicit function theorem. modern birkhäuser classics,” History, theory, and applications, Reprint of the 2003 edition. Birkhäuser/Springer, New York, pp. xiv, vol. 163, 2013.
  28. ——, “Secrest. d.(1966). Gaussian quadrature formulas,” 2011.
  29. L. N. Trefethen, “Multivariate polynomial approximation in the hypercube,” Proceedings of the American Mathematical Society, vol. 145, no. 11, pp. 4837–4844, 2017.
  30. S. K. T. Veettil, Y. Zheng, U. H. Acosta, D. Wicaksono, and M. Hecht, “Multivariate polynomial regression of euclidean degree extends the stability for fast approximations of trefethen functions,” arXiv preprint arXiv:2212.11706, 2022.
  31. J.-E. Suarez Cardona, P.-A. Hofmann, and M. Hecht, “Learning partial differential equations by spectral approximates of general sobolev spaces,” arXiv preprint arXiv:2301.04887, 2023.
  32. J.-E. Suarez Cardona and M. Hecht, “Replacing automatic differentiation by sobolev cubatures fastens physics informed neural nets and strengthens their approximation power,” arXiv e-prints, pp. arXiv–2211, 2022.
  33. M. Hecht, B. L. Cheeseman, K. B. Hoffmann, and I. F. Sbalzarini, “A quadratic-time algorithm for general multivariate polynomial interpolation,” arXiv preprint arXiv:1710.10846, 2017.
  34. M. Hecht, K. B. Hoffmann, B. L. Cheeseman, and I. F. Sbalzarini, “Multivariate Newton interpolation,” arXiv preprint arXiv:1812.04256, 2018.
  35. M. Hecht, K. Gonciarz, J. Michelfeit, V. Sivkin, and I. F. Sbalzarini, “Multivariate interpolation in unisolvent nodes–lifting the curse of dimensionality,” arXiv preprint arXiv:2010.10824, 2020.
  36. M. Hecht and I. F. Sbalzarini, “Fast interpolation and Fourier transform in high-dimensional spaces,” in Intelligent Computing. Proc. 2018 IEEE Computing Conf., Vol. 2,, ser. Advances in Intelligent Systems and Computing, K. Arai, S. Kapoor, and R. Bhatia, Eds., vol. 857.   London, UK: Springer Nature, 2018, pp. 53–75.
  37. K. Sindhu Meena and S. Suriya, “A survey on supervised and unsupervised learning techniques,” in Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, L. A. Kumar, L. S. Jayashree, and R. Manimegalai, Eds.   Cham: Springer International Publishing, 2020, pp. 627–644.
  38. G. Chao, Y. Luo, and W. Ding, “Recent advances in supervised dimension reduction: A survey,” Machine Learning and Knowledge Extraction, vol. 1, no. 1, pp. 341–358, 2019. [Online]. Available: https://www.mdpi.com/2504-4990/1/1/20
  39. D. F. Gordon and M. Desjardins, “Evaluation and selection of biases in machine learning,” Machine learning, vol. 20, pp. 5–22, 1995.
  40. H. Wu and M. Flierl, “Vector quantization-based regularization for autoencoders,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 6380–6387.
  41. A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” Advances in neural information processing systems, vol. 30, 2017.
  42. S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glorot, “Higher order contractive auto-encoder,” in Joint European conference on machine learning and knowledge discovery in databases.   Springer, 2011, pp. 645–660.
  43. S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders: Explicit invariance during feature extraction,” in ICML, 2011.
  44. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  45. C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner, “Understanding disentangling in β𝛽\betaitalic_β-vae,” arXiv preprint arXiv:1804.03599, 2018.
  46. A. Kumar and B. Poole, “On implicit regularization in β𝛽\betaitalic_β-VAEs,” 37th International Conference on Machine Learning, ICML 2020, vol. PartF168147-8, no. Vi, pp. 5436–5446, 2020.
  47. T. Rhodes and D. Lee, “Local disentanglement in variational auto-encoders using jacobian l⁢_⁢1𝑙_1l\_1italic_l _ 1 regularization,” Advances in Neural Information Processing Systems, vol. 34, pp. 22 708–22 719, 2021.
  48. A. C. Gilbert, Y. Zhang, K. Lee, Y. Zhang, and H. Lee, “Towards understanding the invertibility of convolutional neural networks,” in Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017, pp. 1703–1710.
  49. K. Weierstrass, “Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reellen Veränderlichen,” Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, vol. 2, pp. 633–639, 1885.
  50. L. De Branges, “The Stone-Weierstrass Theorem,” Proceedings of the American Mathematical Society, vol. 10, no. 5, pp. 822–824, 1959.
  51. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation in machine learning: a survey,” Journal of machine learning research, vol. 18, 2018.
  52. W. Fulton, “Algebraic curves (mathematics lecture note series),” 1974.
  53. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  54. M. Moor, M. Horn, B. Rieck, and K. Borgwardt, “Topological autoencoders,” in International conference on machine learning.   PMLR, 2020, pp. 7045–7054.
  55. D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults,” Journal of cognitive neuroscience, vol. 19, no. 9, pp. 1498–1507, 2007.
Citations (1)

Summary

We haven't generated a summary for this paper yet.