Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensions of a class of self-affine Moran sets and measures in $\R^2$ (2309.08145v1)

Published 15 Sep 2023 in math.CA

Abstract: For each integer $k>0$, let $n_k$ and $m_k$ be integers such that $n_k\geq 2, m_k\geq 2$, and let $\mathcal{D}k$ be a subset of ${0,\dots,n_k-1}\times {0,\dots,m_k-1}$. For each $w=(i,j)\in \mathcal{D}_k$, we define an affine transformation on~$\R2$ by $$ \Phi_w(x)=T_k(x+w), \qquad w\in\mathcal{D}_k, $$ where $T_k=\operatorname{diag}(n_k{-1},m_k{-1})$. The non-empty compact set $$ E=\bigcap\nolimits{k=1}{\infty}\bigcup\nolimits_{(w_1w_2\ldots w_k)\in \prod_{i=1}k\mathcal{D}_i} \Phi_{w_1}\circ \Phi_{w_2}\circ \ldots\circ \Phi_{w_k} $$ is called a \textit{self-affine Moran set}. In the paper, we provide the lower, packing, box-counting and Assouad dimensions of the self-affine Moran set $E$. We also explore the dimension properties of self-affine Moran measure $\mu$ supported on $E$, and we provide Hausdorff, packing and entropy dimension formulas of $\mu$.

Summary

We haven't generated a summary for this paper yet.