Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stein's Method Approach to the Linear Noise Approximation for Stationary Distributions of Chemical Reaction Networks (2309.07386v3)

Published 14 Sep 2023 in q-bio.QM, math.PR, physics.chem-ph, and q-bio.MN

Abstract: Stochastic Chemical Reaction Networks are continuous time Markov chain models that describe the time evolution of the molecular counts of species interacting stochastically via discrete reactions. Such models are ubiquitous in systems and synthetic biology, but often have a large or infinite number of states, and thus are not amenable to computation and analysis. Due to this, approximations that rely on the molecular counts and the volume being large are commonly used, with the most common being the Reaction Rate Equations and the Linear Noise Approximation. For finite time intervals, Kurtz established the validity of the Reaction Rate Equations and Linear Noise Approximation, by proving law of large numbers and central limit theorem results respectively. However, the analogous question for the stationary distribution of the Markov chain model has remained mostly unanswered, except for chemical reaction networks with special structures or bounded molecular counts. In this work, we use Stein's Method to obtain sufficient conditions for the stationary distribution of an appropriately scaled Stochastic Chemical Reaction Network to converge to the Linear Noise Approximation as the system size goes to infinity. Our results give non asymptotic bounds on the error in the Reaction Rate Equations and in the Linear Noise Approximation as applied to the stationary distribution. As a special case, we give conditions under which the global exponential stability of an equilibrium point of the Reaction Rate Equations is sufficient to obtain our error bounds, thus permitting one to obtain conclusions about the Markov chain by analyzing the deterministic Reaction Rate Equations.

Summary

We haven't generated a summary for this paper yet.