Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the integrability of Lie algebroids by diffeological spaces (2309.07258v3)

Published 13 Sep 2023 in math.DG

Abstract: Lie's third theorem does not hold for Lie groupoids and Lie algebroids. In this article, we show that Lie's third theorem is valid within a specific class of diffeological groupoids that we call singular Lie groupoids.' To achieve this, we introduce a subcategory of diffeological spaces which we callquasi-etale.' Singular Lie groupoids are precisely the groupoid objects within this category, where the unit space is a manifold. Our approach involves the construction of a functor that maps singular Lie groupoids to Lie algebroids, extending the classical functor from Lie groupoids to Lie algebroids. We prove that the \v{S}evera-Weinstein groupoid of an algebroid is an example of a singular Lie groupoid, thereby establishing Lie's third theorem in this context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Alireza Ahmadi. Submersions, immersions, and étale maps in diffeology. arXiv (preprint), 2023. https://arxiv.org/pdf/2203.05994.pdf.
  2. R Almeida and P Molino. Suites d’Atiyah, feuilletages et quantification. Université de Montpellier, Sémin. Géom. Univ. Sci. Tech. Languedoc:39–59, 1985.
  3. Integration of Singular Subalgebroids. arXiv (preprint), August 2020. arXiv: 2008.07976.
  4. Christian Blohmann. Elastic diffeological spaces. arXiv (preprint), 2023. https://arxiv.org/pdf/2301.02583.pdf.
  5. Principal actions of stacky Lie groupoids. International Mathematics Research Notices. IMRN, 2020(16):5055–5125, 2020.
  6. Poisson sigma models and symplectic groupoids. In Quantization of Singular Symplectic Quotients, pages 61–93. Birkhäuser Basel, 2001.
  7. Integrability of Lie brackets. Annals of Mathematics. Second Series, 157(2):575–620, 2003.
  8. Lectures on integrability of Lie brackets. In Lectures on Poisson geometry, volume 17 of Geom. Topol. Monogr., pages 1–107. Geom. Topol. Publ., Coventry, 2011.
  9. Kuo Tsai Chen. Iterated path integrals. Bulletin of the American Mathematical Society, 83(5):831–879, 1977.
  10. On local integration of Lie brackets. Journal für die Reine und Angewandte Mathematik. [Crelle’s Journal], 760:267–293, 2020.
  11. Deformations of Lie groupoids. International Mathematics Research Notices. IMRN, 2020(21):7662–7746, 2020.
  12. Tangent spaces and tangent bundles for diffeological spaces. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 57(1):3–50, 2016.
  13. Associativity and integrability. Transactions of the American Mathematical Society, 373(7):5057–5110, 2020.
  14. G. Hector. Géométrie et topologie des espaces difféologiques. In Analysis and geometry in foliated manifolds (Santiago de Compostela, 1994), pages 55–80. World Sci. Publ., River Edge, NJ, 1995.
  15. Diffeological groups. In Research and Exposition in Mathematics, volume 25, pages 247–260, 2002.
  16. Patrick Iglesias-Zemmour. Fibrations difféologiques et homotopie. PhD thesis, Université de Provence, Marseille, 1985.
  17. Patrick Iglesias-Zemmour. Diffeology, volume 185 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013.
  18. Quasifold groupoids and diffeological quasifolds. arXiv (preprint), June 2022. https://arxiv.org/pdf/2206.14776.pdf.
  19. Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1999.
  20. A. Malcev. Sur les groupes topologiques locaux et complets. C. R. (Doklady) Acad. Sci. URSS (N.S.), 32:606–608, 1941.
  21. Elisa Prato. Sur une généralisation de la notion de V-variété. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 328(10):887–890, 1999.
  22. J.-M. Souriau. Groupes différentiels de physique mathématique. In South Rhone seminar on geometry, II (Lyon, 1983), Travaux en Cours, pages 73–119. Hermann, Paris, 1984.
  23. Jean-Marie Souriau. Groupes différentiels. In Differential Geometrical Methods in Mathematical Physics, pages 91–128. Springer, 2006.
  24. Integrating Poisson manifolds via stacks. In Travaux mathématiques. Fasc. XVI, volume 16 of Trav. Math., pages 285–297. Univ. Luxemb., Luxembourg, 2005.
  25. Integrating Lie algebroids via stacks. Compositio Mathematica, 142(1):251–270, 2006.
  26. Chenchang Zhu. Lie II theorem for Lie algebroids via stacky Lie groupoids. In Trends in mathematics, pages 115–139. Universitätsdrucke Göttingen, Göttingen, 2008.
  27. Pavel Ševera. Some title containing the words ‘homotopy’ and ‘symplectic’, e.g. this one. Travaux Mathématiques, Univ. Luxemb., XVI:121–137, 2005. based on talk at Poisson 2000, Luminy.
Citations (1)

Summary

We haven't generated a summary for this paper yet.