Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aggregating Nearest Sharp Features via Hybrid Transformers for Video Deblurring (2309.07054v2)

Published 13 Sep 2023 in cs.CV

Abstract: Video deblurring methods, aiming at recovering consecutive sharp frames from a given blurry video, usually assume that the input video suffers from consecutively blurry frames. However, in real-world scenarios captured by modern imaging devices, sharp frames often interspersed within the video, providing temporally nearest sharp features that can aid in the restoration of blurry frames. In this work, we propose a video deblurring method that leverages both neighboring frames and existing sharp frames using hybrid Transformers for feature aggregation. Specifically, we first train a blur-aware detector to distinguish between sharp and blurry frames. Then, a window-based local Transformer is employed for exploiting features from neighboring frames, where cross attention is beneficial for aggregating features from neighboring frames without explicit spatial alignment. To aggregate nearest sharp features from detected sharp frames, we utilize a global Transformer with multi-scale matching capability. Moreover, our method can easily be extended to event-driven video deblurring by incorporating an event fusion module into the global Transformer. Extensive experiments on benchmark datasets demonstrate that our proposed method outperforms state-of-the-art video deblurring methods as well as event-driven video deblurring methods in terms of quantitative metrics and visual quality. The source code and trained models are available at https://github.com/shangwei5/STGTN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dongwei Ren (31 papers)
  2. Wei Shang (10 papers)
  3. Yi Yang (856 papers)
  4. Wangmeng Zuo (279 papers)

Summary

We haven't generated a summary for this paper yet.