Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CARE: Large Precision Matrix Estimation for Compositional Data (2309.06985v2)

Published 13 Sep 2023 in stat.ME, math.ST, stat.AP, stat.ML, and stat.TH

Abstract: High-dimensional compositional data are prevalent in many applications. The simplex constraint poses intrinsic challenges to inferring the conditional dependence relationships among the components forming a composition, as encoded by a large precision matrix. We introduce a precise specification of the compositional precision matrix and relate it to its basis counterpart, which is shown to be asymptotically identifiable under suitable sparsity assumptions. By exploiting this connection, we propose a composition adaptive regularized estimation (CARE) method for estimating the sparse basis precision matrix. We derive rates of convergence for the estimator and provide theoretical guarantees on support recovery and data-driven parameter tuning. Our theory reveals an intriguing trade-off between identification and estimation, thereby highlighting the blessing of dimensionality in compositional data analysis. In particular, in sufficiently high dimensions, the CARE estimator achieves minimax optimality and performs as well as if the basis were observed. We further discuss how our framework can be extended to handle data containing zeros, including sampling zeros and structural zeros. The advantages of CARE over existing methods are illustrated by simulation studies and an application to inferring microbial ecological networks in the human gut.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com