Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Kostant's conjecture for components of $V(ρ)\otimes V(ρ)$ (2309.06890v2)

Published 13 Sep 2023 in math.RT

Abstract: For a complex simple Lie algebra $\mathfrak{g}$ or rank $r$, let $\rho$ be the half sum of positive roots and $P(2\rho)\subset \mathbb{R}r$ be the convex hull of all dominant weights $\lambda$ of the form $\lambda=2\rho-\sum_{i=1}r a_i\alpha_i$ with $a_i\in \mathbb{Z}{\geq 0}$ for $1\leq i\leq r$. We show that if $\lambda$ is a vertex of $P(2\rho)$, then $V(\lambda)$ appears in $V(\rho) \otimes V(\rho)$ with multiplicity one, proving partially (for the vertices of $P(2\rho)$) a conjecture of Kostant describing components of $V(\rho)\otimes V(\rho)$. This result allows us to give an alternative proof for a weaker form of the conjecture (up to saturation factor) for any $\mathfrak{g}$. Further, using works of Knutson-Tau on the saturation property of $\mathfrak{sl{r+1}}$, our results give an alternative proof of Kostant's conjecture in the particular case $\mathfrak{g}=\mathfrak{sl_{r+1}}$.

Summary

We haven't generated a summary for this paper yet.