Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Nonlocal Quantum Field Theory and Quantum Entanglement (2309.06576v3)

Published 21 Jul 2023 in hep-th and quant-ph

Abstract: We discuss the nonlocal nature of quantum mechanics and the link with relativistic quantum mechanics such as formulated by quantum field theory. We use here a nonlocal quantum field theory (NLQFT) which is finite, satisfies Poincar\'e invariance, unitarity and microscopic causality. This nonlocal quantum field theory associates infinite derivative entire functions with propagators and vertices. We focus on proving causality and discussing its importance when constructing a relativistic field theory. We formulate scalar field theory using the functional integral in order to characterize quantum entanglement and the entanglement entropy of the theory. Using the replica trick, we compute the entanglement entropy for the theory in 3 + 1 dimensions on a cone. The result is free of UV divergences and we recover the area law.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J. S. Bell, “On the Einstein Podolsky Rosen Paradox”, Physics, 1: 195-200 (1964).
  2. A. Einstein, B. Podolsky, N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, Physical Review, 47, 777 (1935).
  3. A. Aspect, P. Grangier, G. Roger, “Experimental tests of realistic local theories via Bell’s theorem”, Phys. Rev. Lett., 47: 460–463 (1981).
  4. A. Aspect, “Bell’s inequality test: More ideal than ever”, Nature, 398: 189–190 (1999).
  5. J. F. Clauser, M. A. Horne, “Experimental consequences of objective local theories”, Phys. Rev. D.,10: 526–535 (1974).
  6. J. F. Clauser, A. Shimony, “Bell’s theorem: Experimental test and implication”, Rep. Prog Phys., 41:1881–1927 (1978).
  7. A. Zeilinger, “Experiment and the Foundations of Quantum physics”, Rev. Mod. Phys. 71, S288 (1999).
  8. G. Kleppe and R. P. Woodard, “Nonlocal Yang-Mills”, Nucl.Phys. B388 (1992) 81-112, arXiv:9203016v1 [hep-th].
  9. J. W. Moffat, “Ultraviolet Complete Quantum Field Theory and Gauge Invariance”, arXiv:1104.5706v1 [hep-th].
  10. J. W. Moffat, “Ultraviolet Complete Quantum Field Theory and Particle Model”, Eur. Phys. J. Plus, 134:443 (2019), arXiv:1812.01986v4 [physics.gen-ph].
  11. J. W. Moffat, “Model of Boson and Fermion Particle Masses”, Eur. Phys. J. Plus, 136:601 (2021), arXiv:2009.10145v2 [hep-ph].
  12. M. A. Green and J. W. Moffat, “Finite Quantum Field Theory and the Renormalization Group”, Eur. Phys. J. Plus, 136, 919 (2021), arXiv:2012.04487 [hep-th].
  13. D. Pontello, “Aspects of Entanglement Entropy in Algebraic Quantum Field Theory”, arXiv:2005.13975v2 [hep-th].
  14. M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory”, Perseus Books, 1995. arXiv:2302.13742v1 [quant-th].
  15. L. Buoninfante, “On the contour prescriptions in string-inspired nonlocal field theories”, Phys. Rev. D 106, 126028 (2022), arXiv:2205.15348v2 [hep-ph].
  16. F. Nortier, “Extra Dimensions and Fuzzy Branes in String-inspired Nonlocal Field Theory”, Acta Phys.Polon.B 54 (2023) 6, 6-A2, arXiv:2112.15592v5 [hep-th].
  17. L. Modesto and G. Calcagni, “Tree-level scattering amplitudes in nonlocal field theories”, J. High Energ. Phys. 2021, 169 (2021), arXiv:2210.04914v2 [hep-th].
  18. L. Modesto, M. Piva and L. Rachwal, “Finite quantum gauge theories”, Phys. Rev. D 94, 025021 (2016), arXiv:1506.06227v1 [hep-th].
  19. A. S. Koshelev and A. Tokareva, “Unitarity of Minkowski non-local theories made explicit”, Phys. Rev. D 104, 025016 (2021), arXiv:2103.01945v2 [hep-th].
  20. P. Chin and E. T. Tomboulis, “Nonlocal vertices and analyticity: Landau equations and general Cutkosky rule”, J. High Energ. Phys. 2018, 14 (2018), arXiv:1803.08899v2 [hep-th].
  21. E. T. Tomboulis, “Nonlocal and quasi-local field theories”, Phys. Rev. D 92, 125037 (2015), arXiv:1507.00981v1 [hep-th].
  22. A. Das, “Field Theory: A Path Integral Approach, second edition”, World Scientific Lecture Notes in Physics - Vol. 75, 1993.
  23. M. Srednicki, “Entropy and Area”, Phys. Rev. Lett. 71, 666 (1993), arXiv:9303048 [hep-th].
  24. M. Srednicki, “Quantum Field Theory”, Cambridge University Press, 2006.
  25. M. P. Hertzberg and F. Wilczek, “Some Calculable Contributions to Entanglement Entropy”, Phys. Rev. Lett. 106, 050404, (2011), arXiv:1007.0993v2 [hep-th].
  26. M. P. Hertzberg, “Entanglement Entropy in Scalar Field Theory”, J. Phys. A: Math. Theor. 46 015402, (2013), arXiv:1209.4646v2 [hep-th].
  27. P. Calabrese and J. L. Cardy, “Entanglement Entropy and Quantum Field Theory”, J. Stat. Mech. 0406, P06002 (2004), arXiv:0405152v3 [hep-th].
  28. H. Casini and M. Huerta, “Entanglement Entropy in Free Quantum Field Theory”, J. Phys. A A 42, 504007 (2009), arXiv:0905.2562 [hep-th].
  29. H. Casini and M. Huerta, “Lecture on Entanglement in Quantum Field Theory”, arXiv:2201.13310v2 [hep-th].
  30. T. Nishioka, “Entanglement Entropy: Holography and the Renormalization Group”, Rev. Mod. Phys. 90, 035007 (2018), arXiv:1801.10352v3 [hep-th].
  31. I. Agullo, B. Bonga, P. Ribes-Metidieri, D. Kranas and S. Nadal-Gisbert, “How Ubiquitous is Entanglement in Quantum Field Theory?”,
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.