Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Physics-based Deep MRI Reconstruction Via Diffusion Purification (2309.05794v2)

Published 11 Sep 2023 in eess.IV

Abstract: Deep learning (DL) techniques have been extensively employed in magnetic resonance imaging (MRI) reconstruction, delivering notable performance enhancements over traditional non-DL methods. Nonetheless, recent studies have identified vulnerabilities in these models during testing, namely, their susceptibility to (\textit{i}) worst-case measurement perturbations and to (\textit{ii}) variations in training/testing settings like acceleration factors and k-space sampling locations. This paper addresses the robustness challenges by leveraging diffusion models. In particular, we present a robustification strategy that improves the resilience of DL-based MRI reconstruction methods by utilizing pretrained diffusion models as noise purifiers. In contrast to conventional robustification methods for DL-based MRI reconstruction, such as adversarial training (AT), our proposed approach eliminates the need to tackle a minimax optimization problem. It only necessitates fine-tuning on purified examples. Our experimental results highlight the efficacy of our approach in mitigating the aforementioned instabilities when compared to leading robustification approaches for deep MRI reconstruction, including AT and randomized smoothing.

Citations (4)

Summary

We haven't generated a summary for this paper yet.