Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Natural Language Queries for More Effective Systematic Review Screening Prioritisation (2309.05238v3)

Published 11 Sep 2023 in cs.IR and cs.AI

Abstract: Screening prioritisation in medical systematic reviews aims to rank the set of documents retrieved by complex Boolean queries. Prioritising the most important documents ensures that subsequent review steps can be carried out more efficiently and effectively. The current state of the art uses the final title of the review as a query to rank the documents using BERT-based neural rankers. However, the final title is only formulated at the end of the review process, which makes this approach impractical as it relies on ex post facto information. At the time of screening, only a rough working title is available, with which the BERT-based ranker performs significantly worse than with the final title. In this paper, we explore alternative sources of queries for prioritising screening, such as the Boolean query used to retrieve the documents to be screened and queries generated by instruction-based generative large-scale LLMs such as ChatGPT and Alpaca. Our best approach is not only viable based on the information available at the time of screening, but also has similar effectiveness to the final title.

Citations (7)

Summary

We haven't generated a summary for this paper yet.