Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming Semidefinite Programs: $O(\sqrt{n})$ Passes, Small Space and Fast Runtime (2309.05135v1)

Published 10 Sep 2023 in cs.DS

Abstract: We study the problem of solving semidefinite programs (SDP) in the streaming model. Specifically, $m$ constraint matrices and a target matrix $C$, all of size $n\times n$ together with a vector $b\in \mathbb{R}m$ are streamed to us one-by-one. The goal is to find a matrix $X\in \mathbb{R}{n\times n}$ such that $\langle C, X\rangle$ is maximized, subject to $\langle A_i, X\rangle=b_i$ for all $i\in [m]$ and $X\succeq 0$. Previous algorithmic studies of SDP primarily focus on \emph{time-efficiency}, and all of them require a prohibitively large $\Omega(mn2)$ space in order to store \emph{all the constraints}. Such space consumption is necessary for fast algorithms as it is the size of the input. In this work, we design an interior point method (IPM) that uses $\widetilde O(m2+n2)$ space, which is strictly sublinear in the regime $n\gg m$. Our algorithm takes $O(\sqrt n\log(1/\epsilon))$ passes, which is standard for IPM. Moreover, when $m$ is much smaller than $n$, our algorithm also matches the time complexity of the state-of-the-art SDP solvers. To achieve such a sublinear space bound, we design a novel sketching method that enables one to compute a spectral approximation to the Hessian matrix in $O(m2)$ space. To the best of our knowledge, this is the first method that successfully applies sketching technique to improve SDP algorithm in terms of space (also time).

Citations (7)

Summary

We haven't generated a summary for this paper yet.