Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive conformal classification with noisy labels (2309.05092v2)

Published 10 Sep 2023 in stat.ME, cs.LG, math.ST, and stat.TH

Abstract: This paper develops novel conformal prediction methods for classification tasks that can automatically adapt to random label contamination in the calibration sample, leading to more informative prediction sets with stronger coverage guarantees compared to state-of-the-art approaches. This is made possible by a precise characterization of the effective coverage inflation (or deflation) suffered by standard conformal inferences in the presence of label contamination, which is then made actionable through new calibration algorithms. Our solution is flexible and can leverage different modeling assumptions about the label contamination process, while requiring no knowledge of the underlying data distribution or of the inner workings of the machine-learning classifier. The advantages of the proposed methods are demonstrated through extensive simulations and an application to object classification with the CIFAR-10H image data set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.