Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Winner's Curse Free Robust Mendelian Randomization with Summary Data (2309.04957v2)

Published 10 Sep 2023 in stat.ME

Abstract: In the past decade, the increased availability of genome-wide association studies summary data has popularized Mendelian Randomization (MR) for conducting causal inference. MR analyses, incorporating genetic variants as instrumental variables, are known for their robustness against reverse causation bias and unmeasured confounders. Nevertheless, classical MR analyses utilizing summary data may still produce biased causal effect estimates due to the winner's curse and pleiotropic issues. To address these two issues and establish valid causal conclusions, we propose a unified robust Mendelian Randomization framework with summary data, which systematically removes the winner's curse and screens out invalid genetic instruments with pleiotropic effects. Different from existing robust MR literature, our framework delivers valid statistical inference on the causal effect neither requiring the genetic pleiotropy effects to follow any parametric distribution nor relying on perfect instrument screening property. Under appropriate conditions, we show that our proposed estimator converges to a normal distribution and its variance can be well estimated. We demonstrate the performance of our proposed estimator through Monte Carlo simulations and two case studies. The codes implementing the procedures are available at https://github.com/ChongWuLab/CARE/.

Summary

We haven't generated a summary for this paper yet.