Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Advanced Computing and Related Applications Leveraging Brain-inspired Spiking Neural Networks (2309.04426v1)

Published 8 Sep 2023 in cs.NE and cs.AI

Abstract: In the rapid evolution of next-generation brain-inspired artificial intelligence and increasingly sophisticated electromagnetic environment, the most bionic characteristics and anti-interference performance of spiking neural networks show great potential in terms of computational speed, real-time information processing, and spatio-temporal information processing. Data processing. Spiking neural network is one of the cores of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure and information transfer mode of biological neural networks. This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies; then reviews the spiking neural network algorithms and summarizes the unsupervised learning algorithms based on synaptic plasticity rules and four types of supervised learning algorithms from the perspectives of unsupervised learning and supervised learning; finally focuses on the review of brain-like neuromorphic chips under research at home and abroad. This paper is intended to provide learning concepts and research orientations for the peers who are new to the research field of spiking neural networks through systematic summaries.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lyuyang Sima (1 paper)
  2. Joseph Bucukovski (1 paper)
  3. Erwan Carlson (1 paper)
  4. Nicole L. Yien (1 paper)