Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost partitioning every $2$-edge-coloured complete $k$-graph into $k$ monochromatic tight cycles (2309.04218v2)

Published 8 Sep 2023 in math.CO

Abstract: A $k$-uniform tight cycle is a $k$-graph with a cyclic order of its vertices such that every $k$ consecutive vertices from an edge. We show that for $k\geq 3$, every red-blue edge-coloured complete $k$-graph on $n$ vertices contains $k$ vertex-disjoint monochromatic tight cycles that together cover $n - o(n)$ vertices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. P. Allen. Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles. Combin. Probab. Comput., 17(4):471–486, 2008.
  2. Tight cycles and regular slices in dense hypergraphs. J. Combin. Theory Ser. A, 149:30–100, 2017.
  3. The chromatic number of Kneser hypergraphs. Trans. Amer. Math. Soc., 298(1):359–370, 1986.
  4. Partitioning 2-edge-colored graphs by monochromatic paths and cycles. Combinatorica, 34(5):507–526, 2014.
  5. S. Bessy and S. Thomassé. Partitioning a graph into a cycle and an anticycle, a proof of Lehel’s conjecture. J. Combin. Theory Ser. B, 100(2):176–180, 2010.
  6. Partitioning edge-colored hypergraphs into few monochromatic tight cycles. SIAM J. Discrete Math., 34(2):1460–1471, 2020.
  7. Almost partitioning 2-colored complete 3-uniform hypergraphs into two monochromatic tight or loose cycles. J. Graph Theory, 91(1):5–15, 2019.
  8. S. Bustamante and M. Stein. Partitioning 2-coloured complete k𝑘kitalic_k-uniform hypergraphs into monochromatic ℓℓ\ellroman_ℓ-cycles. European J. Combin., 71:213–221, 2018.
  9. L. DeBiasio and L. L. Nelsen. Monochromatic cycle partitions of graphs with large minimum degree. J. Combin. Theory Ser. B, 122:634–667, 2017.
  10. Vertex coverings by monochromatic cycles and trees. J. Combin. Theory Ser. B, 51(1):90–95, 1991.
  11. D. Gale. The game of Hex and the Brouwer fixed-point theorem. Amer. Math. Monthly, 86(10):818–827, 1979.
  12. Partitioning 2222-coloured complete 3333-uniform hypergraphs into two monochromatic tight cycles. In preparation.
  13. L. Gerencsér and A. Gyárfás. On Ramsey-type problems. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 10:167–170, 1967.
  14. A. Gyárfás. Vertex coverings by monochromatic paths and cycles. J. Graph Theory, 7(1):131–135, 1983.
  15. A. Gyárfás. Vertex covers by monochromatic pieces—a survey of results and problems. Discrete Math., 339(7):1970–1977, 2016.
  16. A. Gyárfás and J. Lehel. A Ramsey-type problem in directed and bipartite graphs. Period. Math. Hungar., 3(3-4):299–304, 1973.
  17. An improved bound for the monochromatic cycle partition number. J. Combin. Theory Ser. B, 96(6):855–873, 2006.
  18. A. Gyárfás and G. N. Sárközy. Monochromatic path and cycle partitions in hypergraphs. Electron. J. Combin., 20(1), 2013.
  19. Minimum degree conditions for monochromatic cycle partitioning. J. Combin. Theory Ser. B, 146:96–123, 2021.
  20. S. Letzter. Monochromatic cycle partitions of 2-coloured graphs with minimum degree 3⁢n/43𝑛43n/43 italic_n / 4. Electron. J. Combin., 26(1), 2019.
  21. A. Lo and V. Pfenninger. Towards Lehel’s conjecture for 4-uniform tight cycles. Electron. J. Combin., 30(1), 2023.
  22. T. Łuczak. R⁢(Cn,Cn,Cn)≤(4+o⁢(1))⁢n𝑅subscript𝐶𝑛subscript𝐶𝑛subscript𝐶𝑛4𝑜1𝑛R(C_{n},C_{n},C_{n})\leq(4+o(1))nitalic_R ( italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ≤ ( 4 + italic_o ( 1 ) ) italic_n. J. Combin. Theory Ser. B, 75(2):174–187, 1999.
  23. Partitioning two-coloured complete graphs into two monochromatic cycles. Combin. Probab. Comput., 7(4):423–436, 1998.
  24. A. Pokrovskiy. Partitioning edge-coloured complete graphs into monochromatic cycles and paths. J. Combin. Theory Ser. B, 106:70–97, 2014.
  25. A. Pokrovskiy. Partitioning a graph into a cycle and a sparse graph. Discrete Math., 346(1), 2023.
  26. G. N. Sárközy. Improved monochromatic loose cycle partitions in hypergraphs. Discrete Math., 334:52–62, 2014.
  27. M. Simonovits and E. Szemerédi. Embedding graphs into larger graphs: results, methods, and problems. In Building bridges II—mathematics of László Lovász, volume 28 of Bolyai Soc. Math. Stud., pages 445–592. Springer, Berlin, 2019.
  28. M. Stein. Monochromatic paths in 2-edge-coloured graphs and hypergraphs. Electron. J. Combin., 30, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com