Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Bayesian optimization with active learning of Ta-Nb-Hf-Zr-Ti system for spin transport properties (2309.04168v1)

Published 8 Sep 2023 in cond-mat.mtrl-sci

Abstract: Designing materials with enhanced spin charge conversion, i.e., with high spin Hall conductivity (SHC) and low longitudinal electric conductivity (hence large spin Hall angle (SHA)), is a challenging task, especially in the presence of a vast chemical space for compositionally complex alloys (CCAs). In this work, focusing on the Ta-Nb-Hf-Zr-Ti system, we confirm that CCAs exhibit significant spin Hall conductivities and propose a multi-objective Bayesian optimization approach (MOBO) incorporated with active learning (AL) in order to screen for the optimal compositions with significant SHC and SHA. As a result, within less than 5 iterations we are able to target the TaZr-dominated systems displaying both high magnitudes of SHC (~-2.0 (10${-3}$ $\Omega$ cm)${-1}$) and SHA (~0.03). The SHC is mainly ascribed to the extrinsic skew scattering mechanism. Our work provides an efficient route for identifying new materials with significant SHE, which can be straightforwardly generalized to optimize other properties in a vast chemical space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.