Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Screening of Pneumonia and Urinary Tract Infection at Triage using TriNet (2309.02604v1)

Published 5 Sep 2023 in cs.LG and cs.CY

Abstract: Due to the steady rise in population demographics and longevity, emergency department visits are increasing across North America. As more patients visit the emergency department, traditional clinical workflows become overloaded and inefficient, leading to prolonged wait-times and reduced healthcare quality. One of such workflows is the triage medical directive, impeded by limited human workload, inaccurate diagnoses and invasive over-testing. To address this issue, we propose TriNet: a machine learning model for medical directives that automates first-line screening at triage for conditions requiring downstream testing for diagnosis confirmation. To verify screening potential, TriNet was trained on hospital triage data and achieved high positive predictive values in detecting pneumonia (0.86) and urinary tract infection (0.93). These models outperform current clinical benchmarks, indicating that machine-learning medical directives can offer cost-free, non-invasive screening with high specificity for common conditions, reducing the risk of over-testing while increasing emergency department efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Stephen Z. Lu (1 paper)

Summary

We haven't generated a summary for this paper yet.