Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Nonreciprocal superconducting transport and the spin Hall effect in gyrotropic structures (2309.00495v3)

Published 1 Sep 2023 in cond-mat.supr-con

Abstract: The search for superconducting systems exhibiting nonreciprocal transport and, specifically, the diode effect, has proliferated in recent years. This trend encompasses a wide variety of systems, including planar hybrid structures, asymmetric SQUIDs, and certain noncentrosymmetric superconductors. A common feature of such systems is a gyrotropic symmetry, realized on different scales and characterized by a polar vector. Alongside time-reversal symmetry breaking, the presence of a polar axis allows for magnetoelectric effects, which, when combined with proximity-induced superconductivity, results in spontaneous non-dissipative currents that underpin the superconducting diode effect. This symmetry established, we present a comprehensive theoretical study of transport in a lateral Josephson junctions composed of a normal metal supporting the spin Hall effect, and attached to a ferromagnetic insulator. Due to the presence of the latter, magnetoelectric effects arise without requiring external magnetic fields. We determine the dependence of the anomalous current on the spin relaxation length and the transport parameters commonly used in spintronics to characterize the interface between the metal and the ferromagnetic insulator. Therefore, our theory naturally unifies nonreciprocal transport in superconducting systems with classical spintronic effects, such as the spin Hall effect, spin galvanic effect, and spin Hall magnetoresistance. We propose an experiment involving measurements of magnetoresistance in the normal state and nonreciprocal transport in the superconducting state. Such experiment, on the one hand, allows for determining the parameters of the model and thus verifying with a greater precision the theories of magnetoelectric effects in normal systems. On the other hand, it contributes to a deeper understanding of the underlying microscopic origins that determine these parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. R. Wakatsuki and N. Nagaosa, Phys. Rev. Lett. 121, 026601 (2018).
  2. N. F. Yuan and L. Fu, Proceedings of the National Academy of Sciences 119, e2119548119 (2022).
  3. Y. Tanaka, B. Lu, and N. Nagaosa, Phys. Rev. B 106, 214524 (2022).
  4. S. Pal and C. Benjamin, EPL (Europhysics Letters) 126, 57002 (2019).
  5. A. A. Kopasov, A. G. Kutlin, and A. S. Mel’nikov, Phys. Rev. B 103, 144520 (2021).
  6. I. Margaris, V. Paltoglou, and N. Flytzanis, Journal of Physics: Condensed Matter 22, 445701 (2010).
  7. J. J. He, Y. Tanaka, and N. Nagaosa, New Journal of Physics 24, 053014 (2022).
  8. T. H. Kokkeler, A. A. Golubov, and F. S. Bergeret, Phys. Rev. B 106, 214504 (2022).
  9. S. Banerjee and M. S. Scheurer, arXiv preprint arXiv:2304.03303 10.48550/arXiv.2304.03303 (2023).
  10. S. Ilić and F. S. Bergeret, Phys. Rev. Lett. 128, 177001 (2022).
  11. R. S. Souto, M. Leijnse, and C. Schrade, Phys. Rev. Lett. 129, 267702 (2022).
  12. J. J. He, Y. Tanaka, and N. Nagaosa, Nature Communications 14, 3330 (2023).
  13. M. Nadeem, M. S. Fuhrer, and X. Wang, arXiv preprint arXiv:2301.13564 10.48550/arXiv.2301.13564 (2023).
  14. Y. Lu, I. Tokatly, and F. S. Bergeret, arXiv preprint arXiv:2307.10723 10.48550/arXiv.2307.10723 (2023).
  15. A. Costa, J. Fabian, and D. Kochan, Phys. Rev. B 108, 054522 (2023).
  16. M. Davydova, S. Prembabu, and L. Fu, Science advances 8, eabo0309 (2022).
  17. F. Dolcini, M. Houzet, and J. S. Meyer, Phys. Rev. B 92, 035428 (2015).
  18. A. Daido, Y. Ikeda, and Y. Yanase, Phys. Rev. Lett. 128, 037001 (2022).
  19. A. Buzdin, Physical review letters 101, 107005 (2008).
  20. Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009).
  21. J.-F. Liu and K. S. Chan, Phys. Rev. B 82, 184533 (2010).
  22. F. Bergeret and I. Tokatly, Europhysics Letters 110, 57005 (2015).
  23. F. Konschelle, I. V. Tokatly, and F. S. Bergeret, Phys. Rev. B 92, 125443 (2015).
  24. M. A. Silaev, I. V. Tokatly, and F. S. Bergeret, Phys. Rev. B 95, 184508 (2017).
  25. M. Alidoust, Physical Review B 101, 155123 (2020).
  26. M. Alidoust, C. Shen, and I. Žutić, Physical Review B 103, L060503 (2021).
  27. V. M. Edelstein, Phys. Rev. Lett. 75, 2004 (1995).
  28. V. M. Edelstein, Phys. Rev. B 72, 172501 (2005).
  29. A. Aronov and Y. B. Lyanda-Geller, Soviet Journal of Experimental and Theoretical Physics Letters 50, 431 (1989).
  30. K. Shen, G. Vignale, and R. Raimondi, Phys. Rev. Lett. 112, 096601 (2014).
  31. Y. V. Fominov and D. S. Mikhailov, Phys. Rev. B 106, 134514 (2022).
  32. S. Nakosai, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 108, 147003 (2012).
  33. M. Houzet and J. S. Meyer, Phys. Rev. B 92, 014509 (2015).
  34. I. V. Bobkova and A. M. Bobkov, Phys. Rev. B 95, 184518 (2017).
  35. V. M. Agranovich and V. L. Ginzburg, Crystal optics with spatial dispersion, and excitons, 2nd ed., Springer Series in Solid-state Sciences (Springer, Berlin, 1984).
  36. W.-Y. He and K. T. Law, Phys. Rev. Res. 2, 012073 (2020).
  37. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
  38. S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348 (2003).
  39. E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys. Rev. Lett. 93, 226602 (2004).
  40. S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
  41. M. I. Dyakonov and A. V. Khaetskii, Spin Hall Effect, in Spin Physics in Semiconductors, edited by M. I. Dyakonov (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 211–243.
  42. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  43. Y. Ando, Journal of the Physical Society of Japan 82, 102001 (2013).
  44. J. Borge and I. V. Tokatly, Phys. Rev. B 99, 241401 (2019).
  45. S. Karube, K. Kondou, and Y. Otani, Applied Physics Express 9, 033001 (2016).
  46. F. S. Bergeret and I. V. Tokatly, Phys. Rev. B 94, 180502 (2016).
  47. P. Virtanen, F. S. Bergeret, and I. V. Tokatly, Phys. Rev. B 104, 064515 (2021).
  48. C. Huang, I. V. Tokatly, and F. S. Bergeret, Phys. Rev. B 98, 144515 (2018).
  49. M. Kuprianov and V. Lukichev, Zh. Eksp. Teor. Fiz 94, 149 (1988).
  50. A. Brataas, Y. V. Nazarov, and G. E. Bauer, The European Physical Journal B-Condensed Matter and Complex Systems 22, 99 (2001).
  51. X.-P. Zhang, F. S. Bergeret, and V. N. Golovach, Nano letters 19, 6330 (2019).
  52. R. J. Elliott, Phys. Rev. 96, 266 (1954).
  53. M. I. Dyakonov and V. I. Perel, Zh. Eksp. Teor. Fiz. 60 (1971), [Sov. Phys. JETP 33, 1053 (1971)].
  54. Y. Yafet, Phys. Rev. 85, 478 (1952).
  55. A. Abrikosov and L. Gor’kov, Zh. Eksp. Teor. Fiz. 39 (1960), [Sov. Phys. JETP 12, 1243 (1961)].
  56. G. Eilenberger, Zeitschrift für Physik A Hadrons and nuclei 214, 195 (1968).
  57. A. Larkin and Y. Ovchinnikov, Soviet Physics JETP 41, 960 (1975).
  58. K. D. Usadel, Phys. Rev. Lett. 25, 507 (1970).
  59. A. Kamenev, Field theory of non-equilibrium systems (Cambridge University Press, 2011).
  60. M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009).
  61. P. Virtanen, F. S. Bergeret, and I. V. Tokatly, Phys. Rev. B 105, 224517 (2022).
  62. F. Bergeret, A. F. Volkov, and K. B. Efetov, Reviews of modern physics 77, 1321 (2005).
  63. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
  64. E. A. Demler, G. B. Arnold, and M. R. Beasley, Phys. Rev. B 55, 15174 (1997).
  65. K. Efetov, A. Larkin, and D. Kheml’Nitskiǐ, Soviet Journal of Experimental and Theoretical Physics 52, 568 (1980).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube