Hamiltonian for the Hilbert-Pólya Conjecture (2309.00405v6)
Abstract: We introduce a Hamiltonian to address the Hilbert-P\'olya conjecture. The eigenfunctions of the introduced Hamiltonian, subject to the Dirichlet boundary conditions on the positive half-line, vanish at the origin by the nontrivial zeros of the Riemann zeta function. Consequently, the eigenvalues are determined by these nontrivial Riemann zeros. If the Riemann hypothesis (RH) is true, the eigenvalues become real and represent the imaginary parts of the nontrivial zeros. Conversely, if the Hamiltonian is self-adjoint, or more generally, admits only real eigenvalues, then the RH follows. In our attempt to demonstrate the latter, we establish the existence of a similarity transformation of the introduced Hamiltonian that is self-adjoint on the domain specified by an appropriate boundary condition, which is satisfied by the eigenfunctions through the vanishing of the Riemann zeta function. Our result can be extended to a broader class of functions whose zeros lie on the critical line.
- E. C. Titchmarsh and D. R. Heath-Brown, The theory of the Riemann zeta-function (Oxford university press, 1986).
- X. Gourdon and P. Demichel, “The 1013superscript101310^{13}10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT first zeros of the riemann zeta function, and zeros computation at very large height,” (2004).
- A. Selberg, J. Indian Math. Soc. 20, 47 (1956).
- H. L. Montgomery, in Proc. Symp. Pure Math, Vol. 24 (1973) pp. 181–193.
- A. M. Odlyzko, Mathematics of Computation 48, 273 (1987).
- A. Connes, Selecta Mathematica 5, 29 (1999).
- M. V. Berry and J. P. Keating, in Supersymmetry and Trace Formulae (Springer, 1999) pp. 355–367.
- M. V. Berry and J. P. Keating, SIAM review 41, 236 (1999b).
- G. Sierra, Nuclear Physics B 776, 327 (2007).
- G. Sierra, Symmetry 11, 494 (2019).
- J. V. Bellissard, arXiv preprint arXiv:1704.02644 (2017).
- W. G. Faris, Self-adjoint operators, Vol. 433 (Springer, 2006).
- J. Twamley and G. Milburn, New Journal of Physics 8, 328 (2006).
- M. Reed and B. Simon, I: Functional analysis, Vol. 1 (Academic press, 1981).
- A. M. Perelomov, Soviet Physics Uspekhi 20, 703 (1977).
- A. Barut and L. Girardello, Communications in Mathematical Physics 21, 41 (1971).
- D. Bump and E. K. S. Ng, Mathematische Zeitschrift 192, 195 (1986).
- M. W. Coffey and M. C. Lettington, Journal of Number Theory 148, 507 (2015).