Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised CT Metal Artifact Reduction by Plugging Diffusion Priors in Dual Domains (2308.16742v2)

Published 31 Aug 2023 in eess.IV and cs.CV

Abstract: During the process of computed tomography (CT), metallic implants often cause disruptive artifacts in the reconstructed images, impeding accurate diagnosis. Several supervised deep learning-based approaches have been proposed for reducing metal artifacts (MAR). However, these methods heavily rely on training with simulated data, as obtaining paired metal artifact CT and clean CT data in clinical settings is challenging. This limitation can lead to decreased performance when applying these methods in clinical practice. Existing unsupervised MAR methods, whether based on learning or not, typically operate within a single domain, either in the image domain or the sinogram domain. In this paper, we propose an unsupervised MAR method based on the diffusion model, a generative model with a high capacity to represent data distributions. Specifically, we first train a diffusion model using CT images without metal artifacts. Subsequently, we iteratively utilize the priors embedded within the pre-trained diffusion model in both the sinogram and image domains to restore the degraded portions caused by metal artifacts. This dual-domain processing empowers our approach to outperform existing unsupervised MAR methods, including another MAR method based on the diffusion model, which we have qualitatively and quantitatively validated using synthetic datasets. Moreover, our method demonstrates superior visual results compared to both supervised and unsupervised methods on clinical datasets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.